European Journal of Plant Pathology

, Volume 131, Issue 3, pp 519–527 | Cite as

PCR-based detection of sunflower white blister rust (Pustula helianthicola C. Rost & Thines) in soil samples and asymptomatic host tissue

  • Otmar Spring
  • Thines Marco
  • Stefanie Wolf
  • Reinhard Zipper
Article

Abstract

Sequencing of partial cox2 (part of the mitochondrial cytochrome-c-oxydase (COX) gene) was performed with samples from the oomycete genus Pustula, the white blister rusts of Asteraceae and related families. Sequence comparison uncovered several single nucleotide polymorphisms (SNPs) between P. spinulosa and host specific strains of Pustula isolated from Senecio vulgaris, Tragopogon pratensis and cultivated sunflower, Helianthus annuus. Based on these differences, specific primers were designed for PCR-based detection of white blister rust strains pathogenic to sunflower. The specificity of the primers was confirmed by cross testing with DNA from various oomycetes occurring in the same locality. The limit of detection for DNA of P. helianthicola was 10 pg. This allowed detection with DNA from single sporangia and single oospores. The PCR-based experiments allowed detection of the presence of sunflower white blister rust in soil samples from fields on which infected plants had been cultivated several months before. Moreover, the molecular tools were successfully applied to trace the pathogen in asymptomatic tissue of infected plants, demonstrating the systemic nature of Pustula on sunflower.

Keywords

Cox2 Oomycete Molecular detection Pustula tragopogonis Pustula obtusata White blister rust 

References

  1. Aegerter, B. J., Nunez, J. J., & Davis, R. M. (2002). Detection and management of downy mildew in rose rootstock. Plant Disease, 86, 1363–1368.CrossRefGoogle Scholar
  2. Belbahri, L., Calmin, G., Pawlowski, J., & Lefort, F. (2005). Phylogenetic analysis and real-time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycological Research, 109, 1276–1287.PubMedCrossRefGoogle Scholar
  3. Chandler, G. T., & Plunkett, G. M. (2004). Evolution in Apiales: Nuclear and chloroplast markers together in (almost) perfect harmony. Botanical Journal of the Linnean Society, 144, 123–147.CrossRefGoogle Scholar
  4. Delhey, R., & Kiehr-Delhey, M. (1985). Symptoms and epidemiological implications associated with oospore formation of Albugo tragopogonis on sunflower in Argentina. Proceedings XI International Sunflower Conference, Mar Del Plata, Argentina. International Sunflower Association, Paris, France, pp. 455–457Google Scholar
  5. Delmotte, F., Giresse, X., Richard-Cervera, S., M'Baya, J., Vear, F., Tourvieille, J., et al. (2008). Single nucleotide polymorphisms reveal multiple introductions into France of Plasmopara halstedii, the plant pathogen causing sunflower downy mildew. Infection, Genetics and Evolution, 8, 534–540.PubMedCrossRefGoogle Scholar
  6. Furuya, S., Suzuki, S., Kobayashi, H., Saito, S., & Takayanagi, T. (2009). Rapid method for detecting resistance to a QoI fungicide in Plasmopara viticola populations. Pest Management Science, 65, 840–843.PubMedCrossRefGoogle Scholar
  7. Hudspeth, D. S. S., Nadler, S. A., & Hudspeth, M. E. S. (2000). A COX2 molecular phylogeny of the Peronosporomycetes. Mycologia, 92, 674–684.CrossRefGoogle Scholar
  8. Hukkanan, A., Pietikäinen, L., Kärenlampi, S., & Kokko, H. (2006). Quantification of downy mildew (Peronospora sparsa) in Rubus species using real-time PCR. European Journal of Plant Pathology, 116, 225–235.CrossRefGoogle Scholar
  9. Intelman, F., & Spring, O. (2002). Analysis of total DNA by minisatellite and simple-sequence repeat primers for the use of population studies in Plasmopara halstedii. Canadian Journal of Microbiology, 48, 555–559.CrossRefGoogle Scholar
  10. Ioos, R., Laugustin, L., Rose, S., Tourvieille, J., & Tourvieille de Labrouhe, D. (2007). Development of a PCR test to detect the downy mildew causal agent Plasmopara halstedii in sunflower seeds. Canadian Journal of Microbiology, 48, 555–559.Google Scholar
  11. Michiels, A., Van den Ende, W., Tucker, M., Van Riet, L., & Van Laere, A. (2003). Extraction of high-quality genomic DNA from latex-containing plants. Analytical Biochemistry, 315, 85–89.PubMedCrossRefGoogle Scholar
  12. Pavon, C. F., Babadoost, M., & Lambert, K. N. (2008). Quantification of Phytophthora capsici oospores in soil by sieving-centrifugation and real-time polymerase chain reaction. Plant Disease, 92, 143–149.CrossRefGoogle Scholar
  13. Ploch, S., Telle, S., Choi, Y.-J., Cunnington, J., Priest, M., Rost, C., et al. (2011). The molecular phylogeny of the white blister rust genus Pustula reveals a case of underestimated biodiversity with several undescribed species on ornamentals and crop plants. Fungal Biology, 115, 214–219.PubMedCrossRefGoogle Scholar
  14. Rost, C., & Thines, M. (2011). A new species of Pustula (Oomycetes, Albuginales) is the causal agent of sunflower white rust. Mycological Progress, in press Google Scholar
  15. Spring, O. (2009). Transition of secondary to systemic infection of sunflower with Plasmopara halstedii—An underestimated factor in the epidemiology of the pathogen. Fungal Ecology, 2, 75–80.CrossRefGoogle Scholar
  16. Spring, O., & Thines, M. (2010). Molecular techniques for classification and diagnosis of plant pathogenic Oomycota. In Y. Gherbawy & K. Voigt (Eds.), Molecular identification of fungi (pp. 35–50). Berlin: Springer.CrossRefGoogle Scholar
  17. Spring, O., Bachofer, M., Thines, M., Riethmüller, A., Göker, M., & Oberwinkler, F. (2006). Intraspecific relationship of Plasmopara halstedii isolates differing in pathogenicity and geographic origin based on ITS sequence data. European Journal of Plant Pathology, 114, 309–315.CrossRefGoogle Scholar
  18. Thines, M., & Spring, O. (2005). A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon, 92, 443–458.Google Scholar
  19. Thines, M., Bachofer, M., Zipper, R., Spring, O. (2004). PCR-mediated detection of Plasmopara halstedii in sunflower cultivation. Proceedings of the 54th Deutsche Pflanzenschutztagung, Hamburg, Germany, p. 219Google Scholar
  20. Thines, M., Zipper, R., & Spring, O. (2006). First report of Pustula tragopogonis, the cause of white blister rust on cultivated sunflower in Southern Germany. Plant Disease, 90, 110.CrossRefGoogle Scholar
  21. Thines, M., Zipper, R., Schäuffele, D., & Spring, O. (2006). Characteristics of Pustula tragopogonis (syn. Albugo tragopogonis) newly occurring on cultivated sunflower in Germany. Journal of Phytoptahology, 154, 88–92.CrossRefGoogle Scholar
  22. Van Wyk, P. S., Lones, B. L., Viljoen, A., & Rong, I. H. (1995). Early lodging, a novel manifestation of Albugo tragopogonis infection on sunflower in South Africa. HELIA, 18, 83–90.Google Scholar
  23. Verwoerd, L. (1929). A preliminary check list of diseases of cultivated plants in the winter rainfall area of the Cape Province. Union of the South African Department of Agriculture Science Bulletin No. 88Google Scholar
  24. Viljoen, A., Van Wyk, P. S., & Jooste, W. J. (1999). Occurrence of the white rust pathogen, Albugo tragopogonis, in sea of sunflower. Plant Disease, 83, 77.CrossRefGoogle Scholar
  25. Wang, Y., Zhang, W., Wang, Y., & Zheng, X. (2006). Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays. Phytopathology, 96, 1315–1321.PubMedCrossRefGoogle Scholar
  26. Zipper, R., Hammer, T., & Spring, O. (2009). PCR-based monitoring of recent isolates of tobacco blue mold from Europe reveals the presence of two genetically distinct phenotypes differing in fungicide sensitivity. European Journal of Plant Patholgy, 123, 367–375.CrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • Otmar Spring
    • 1
  • Thines Marco
    • 1
  • Stefanie Wolf
    • 1
  • Reinhard Zipper
    • 1
  1. 1.Institute of BotanyUniversity of HohenheimStuttgartGermany

Personalised recommendations