Skip to main content
Log in

ROS and NO production in compatible and incompatible tomato-Meloidogyne incognita interactions

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) has been shown to be an essential regulatory molecule in plant response to pathogen infection in synergy with reactive oxygen species (ROS). At the present, nothing is known about the role of NO in disease resistance to nematode infection. We used a resistant tomato cultivar with different sensitivity to avirulent and virulent populations of the root-knot nematode Meloidogyne incognita to investigate the key components involved in oxidative and nitrosative metabolism. We analyzed the superoxide radical production, hydrogen peroxide content, and nitric oxide synthase (NOS)-like and nitrate reductase activities, as potential sources of NO. A rapid NO accumulation and ROS production were found at 12 h after infection in compatible and incompatible tomato-nematode interactions, whereas the amount of NO and ROS gave different results 24 and 48 h after infection amongst compatible and incompatible interactions. NOS-like arginine-dependent enzyme rather than nitrate reductase was the main source of NO production, and NOS-like activity increased substantially in the incompatible interaction. We can envisage a functional overlap of both NO and ROS in tomato defence response to nematode invasion, NO and H2O2 cooperating in triggering hypersensitive cell death. Therefore, NO and ROS are key molecules which may help to orchestrate events following nematode challenge, and which may influence the host cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

cPTIO:

2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

DAF-2DA:

4,5 diaminofluorescein diacetate

DAPI:

4′,6-diamidino-2- phenylindole dihydrochloride

DPI:

Diphenylene-iodonium

HPF:

2-[6-(4′-hydroxy) phenoxy-3H-xanthen-3-on-9-yl] benzoic acid

Mn-DFA:

Mn-desferrioxamine

L-NAME:

NG-nitro-L-Arg methyl ester

ONOO :

Peroxynitrite

SHAM:

Salicylhydroxamate

XTT:

Na, 3′-{1-[phenylamino-carbonyl]-3,4-tetrazolium}-bis (4-methoxy-6-nitro) benzene-sulfonic acid hydrate

References

  • Abad, P., Favery, B., Rosso, M. N., & Castagnone-Sereno, P. (2003). Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Asai, S., Ohta, K., & Yoshioka, H. (2008). MAPK signalling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. The Plant Cell, 20, 1390–1406.

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore, S., Shen, Z., Rosso, M. N., Abad, P., Shih, P., & Briggs, S. P. (2008). Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathogens, 4, 1–12.

    Article  Google Scholar 

  • Corpas, F. J., Palma, J. M., del Río, L. A., & Barroso, J. B. (2009). Evidence supporting the existence of L-arginine dependent nitric oxide synthase activity in plants. The New Phytologist, 184, 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Courtois, C., Besson, A., Dahan, J., Bourque, S., Dobrowolska, G., Pugin, A., et al. (2008). Nitric oxide signalling in plants: interplays with Ca2+ and protein kinases. Journal of Experimental Botany, 59, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, N. M., Galli, M., Tischner, R., Heimer, Y. M., Okamoto, M., & Mack, A. (2006). Response to Zemojtel et al: plant nitric oxide synthase: back to square one. Trends in Plant Science, 11, 526–527.

    Article  CAS  Google Scholar 

  • Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interaction between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Science of the USA, 98, 13454–13459.

    Article  CAS  Google Scholar 

  • Du, S., Zhang, Y., Lin, X., Wang, Y., & Tang, C. (2008). Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica Chinensis L.). Plant Cell and Environment, 31, 195–204.

    CAS  Google Scholar 

  • Hong, J. K., Yun, B. W., Kang, J. G., Raja, M. U., Kwon, E., Sorhagen, K., et al. (2008). Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany, 59, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Jin, C. W., Du, S. T., Zhang, Y. S., Lin, X. Y., & Tang, C. X. (2009). Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Annals of Botany, 104, 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Leleu, O., & Vuylsteker, C. (2004). Unusual regulatory nitrate reductase activity in cotyledons of Brassica napus seedlings: enhancement of nitrate reductase activity by ammonium supply. Journal of Experimental Botany, 55, 815–823.

    Article  PubMed  CAS  Google Scholar 

  • Lum, H. K., Butt, Y. K. C., & Lo, S. C. L. (2002). Hydrogen peroxide induces a rapid production of nitric oxide in Mung Bean (Phaseolus aureus). Nitric Oxide: Biology and Chemistry, 6, 205–213.

    Article  CAS  Google Scholar 

  • Melillo, M. T., Bleve-Zacheo, T., Zacheo, G., & Gahan, P. B. (1989). Histochemical localisation of carboxyl esterases in roots of Lycopersicon esculentum in response to Meloidogyne incognita infection. The Annals of Applied Biology, 114, 325–330.

    Article  Google Scholar 

  • Melillo, M. T., Leonetti, P., Bongiovanni, M., Castagnone-Sereno, P., & Bleve-Zacheo, T. (2006). Modulation of ROS activities and H2O2 accumulation during compatible and incompatible tomato/root-knot nematode interactions. The New Phytologist, 170, 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Modolo, L. V., Augusto, O., Almeida, I. M. G., Pinto-Maglio, C. A. F., Oliveira, H. C., Seligman, K., et al. (2006). Decreased arginine and nitrite levels in nitrate reductase-deficient Arabidopsis thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Science, 171, 34–40.

    Article  CAS  Google Scholar 

  • Neill, S. J., Bright, J., Desikan, R., Hancock, J. T., Harrison, J. T., & Wilson, I. (2008). Nitric oxide evolution and perception. Journal of Experimental Botany, 59, 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Requena, M. E., Egea-Gilabert, C., & Candela, M. E. (2005). Nitric oxide generation during the interaction with Phytophthora capsici of two Capsicum annuum varieties showing different degrees of sensitivity. Physiologia Plantarum, 124, 50–60.

    Article  CAS  Google Scholar 

  • Romero-Puertas, M. C., Rodriguez-Serrano, M., Corpas, F. I., Gomez, M., Del Rio, L. A., & Sandali, L. M. (2004). Cadmium-induced subcellular accumulation of O .−2 and H2O2 in pea leaves. Plant, Cell & Environment, 27, 1122–1134.

    Article  CAS  Google Scholar 

  • Sagi, M., & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology, 141, 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Shi, F. M., & Li, Y. Z. (2008). Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. Biochemistry and Molecular Biology Reports, 41, 79–85.

    CAS  Google Scholar 

  • Tada, Y., Mori, T., Shinogi, T., Yao, N., Takahashi, S., Betsuyaku, S., et al. (2004). Nitric oxide and reactive oxygen species do not elicit cell death but induce apoptosis in the adjacent cells during the defense response of oat. Molecular Plant-Microbe Interactions, 17, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signalling in response to pathogens. Plant Physiology, 141, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141, 384–390.

    Article  PubMed  Google Scholar 

  • Wendehenne, D., Durner, J., & Klessig, D. F. (2004). Nitric oxide: a new player in plant signalling and defence. Current Opinion in Plant Biology, 7, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, V. M., & Gleason, C. A. (2003). Plant-nematode interactions. Current Opinion in Plant Biology, 6, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, A., Katou, S., Yoshioka, H., Doke, N., & Kawakita, K. (2006). Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant & Cell Physiology, 47, 726–735.

    Article  Google Scholar 

  • Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., et al. (2004). Innate immunity in Arabidopsis thaliana: liposaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proceedings of the National Academy of Science of the USA, 101, 15811–15816.

    Article  CAS  Google Scholar 

  • Zeier, J., Delledonne, M., Mishna, T., Severi, E., Sonoda, M., & Lamb, C. (2004). Genetic elucidation of nitric oxide signalling in incompatible plant-pathogen interactions. Plant Physiology, 136, 2875–2886.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Roberto Lerario for his helpful assistance with Figures. This work was supported by COST Action 872 “Exploiting genomics to understand plant-nematode interactions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Melillo.

Additional information

Maria Teresa Melillo and Paola Leonetti contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melillo, M.T., Leonetti, P., Leone, A. et al. ROS and NO production in compatible and incompatible tomato-Meloidogyne incognita interactions. Eur J Plant Pathol 130, 489–502 (2011). https://doi.org/10.1007/s10658-011-9768-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9768-4

Keywords

Navigation