European Journal of Plant Pathology

, Volume 130, Issue 1, pp 29–43 | Cite as

Metabolomics technology to phenotype resistance in barley against Gibberella zeae

  • G. Kenchappa Kumaraswamy
  • Venkatesh Bollina
  • Ajjamada C. Kushalappa
  • Thin M. Choo
  • Yves Dion
  • Sylvie Rioux
  • Orval Mamer
  • Denis Faubert
Original Research


The mechanisms of resistance in barley to fusarium head blight (FHB), caused by Gibberella zeae are complex. Metabolomics technology was explored to phenotype resistance. Spikelets of barley genotypes with contrasting levels of resistance to FHB, mock inoculated or with the pathogen, were extracted with aqueous methanol and the metabolites were analyzed using liquid chromatography and hybrid mass spectrometry. Peaks were de-convoluted using XCMS and annotated using CAMERA and IntelliXtract bioinformatics tools. A t-test, of a total of 1608 purified peaks, selected 626 metabolites with significant treatment effects, of which 161 were identified as resistance related (RR) metabolites. A total of 53 metabolites, that are RR or pathogenicity related (PR), were assigned with putative compound names. These mainly belonged to three metabolic pathways: fatty acid (jasmonic acid, methyl jasmonate, 9,10- dihydro-isojasmonate, linolenic acid, linoleic acid, traumatic acid), phenylpropanoid (p-coumaric acid, caffeyl alcohol, dimethoxy-4-phenylcoumarin, rosmarinic acid, diphyllin, 5-methoxypodophyllotoxin) and flavonoid (naringenin, catechin, quercetin, and alpinumisoflavone). A few PR/RR metabolites significantly reduced mycelial growth of G. zeae in vitro.


Gibberella zeae Fusarium graminearum Hordeum vulgare Metabolomics Mass spectrometry Barley Liquid chromatography Fusarium head blight Quantitative resistance 


  1. Agrios, G. N. (2005). Plant Pathology. London: Elsevier Academic.Google Scholar
  2. Allwood, J. W., Ellis, D. I., Hield, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. The Plant Journal, 46, 351–368.PubMedCrossRefGoogle Scholar
  3. Balbi, V., & Devoto, A. (2008). Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytologist, 177, 301–318.PubMedCrossRefGoogle Scholar
  4. Bedair, M., & Sumner, L. W. (2008). Current and emerging mass spectrometry technologies for metabolomics. Trends in Analytical Chemistry, 27, 238–250.CrossRefGoogle Scholar
  5. Bollina, V., Kumaraswamy, G. K., Kushalappa, A. C., Choo, T. M., Dion, Y., Rioux, S., et al. (2010). Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Molecular Plant Pathology, 11(6), 769–782.PubMedGoogle Scholar
  6. Boutigny, A. L., Barreau, C., Atanasova-penichon, V., Verdal-bonnin, M., Pinson-gadais, L., & Richard-forget, F. (2009). Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycological Research, 113, 746–753.PubMedCrossRefGoogle Scholar
  7. Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding, 128, 1–26.CrossRefGoogle Scholar
  8. Bushnell, W. M. R., Hazen, B. E., & Pritsch, C. (2003). Histology and physiology of Fusarium head blight. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight in wheat and barley (pp. 44–83). St Paul: American Phytopathological Society.Google Scholar
  9. Cho, J. Y., Choi, J. G., Son, W. S., Jang, K. S., Lim, H. K., Lee, S. O., et al. (2007). Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Management Science, 63, 935–940.PubMedCrossRefGoogle Scholar
  10. Choo, T. M., Vigier, B., Shen, Q. Q., Martin, R. A., Ho, K. M., & Savard, M. (2004). Barley traits associated with resistance to Fusarium head blight and deoxynivalenol accumulation. Phytopathology, 94, 1145–1150.PubMedCrossRefGoogle Scholar
  11. de la Penna, R. C., Smith, K. P., Cappettini, F., Muehlbauer, G. J., Gallo-Meagher, M., Dill-Macky, R., et al. (1999). Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theoretical and Applied Genetics, 99, 561–569.CrossRefGoogle Scholar
  12. de Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.PubMedCrossRefGoogle Scholar
  13. Eggert, K., Hollmann, J., Hiller, B., Kruse, H. P., Rawel, H. M., & Pawelzik, E. (2010). Effects of Fusarium infection on the phenolics in emmer and naked barley. Journal of Agricultural Food Chemistry, 58, 3043–3049.CrossRefGoogle Scholar
  14. Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small molecule complement of biological systems. Analytical Chemistry, 81, 6656–6667.PubMedCrossRefGoogle Scholar
  15. Farmer, E. E. (2007). Jasmonate perception machines. Nature, 448, 659–660.PubMedCrossRefGoogle Scholar
  16. Fiehn, O., Sumner, L. W., Ward, J., Dickerson, J., Lange, M. B., Lane, G., et al. (2007). Minimum reporting standards for plant biology context in metabolomics studies. Metabolomics, 3, 195–201.CrossRefGoogle Scholar
  17. Geddes, J., Eudes, F., Laroche, A., & Selinger, L. B. (2008). Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics, 8, 545–554.PubMedCrossRefGoogle Scholar
  18. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  19. Golkari, S., Gilbert, J., Prasher, S., & Procunier, J. D. (2007). Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ specific and differentially expressed genes. Plant Biotechnology Journal, 5, 38–49.PubMedCrossRefGoogle Scholar
  20. Hamberg, M. (1999). An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids, 34, 1131–1142.PubMedCrossRefGoogle Scholar
  21. Hamzehzarghani, H., Kushalappa, A. C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., et al. (2005). Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiology and Molecular Plant Pathology, 66, 119–133.CrossRefGoogle Scholar
  22. Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A., Dion, Y., Rioux, S., et al. (2008a). Metabolic profiling coupled with statistical analyses for potential high throughput screening of quantitative resistance to fusarium head blight in wheat cultivars. Canadian Journal of Plant Pathology, 30, 24–36.CrossRefGoogle Scholar
  23. Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A. C., Mamer, O., & Somers, D. (2008b). Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance against fusarium head blight. Canadian Journal of Plant Science, 88, 789–797.Google Scholar
  24. Joffe, A. (1986). In A. Joffe (Ed.), Fusarium species: Their biology and toxicology (pp. 225–292). New York: Wiley.Google Scholar
  25. Johnson, D. E. (1998). Applied multivariate methods for data analysts. North Scituate, MA: Duxbury Press.Google Scholar
  26. Kato, T., Yamaguchi, Y., Abe, N., Uyehara, T., Namai, T., Kodama, M., et al. (1985). Structures and synthesis of unsaturated trihydroxy C18 fatty acids in rice plant suffering from rice blast disease. Tetrahedron Letters, 26, 2357–2360.CrossRefGoogle Scholar
  27. Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.PubMedCrossRefGoogle Scholar
  28. Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. Molecular Plant-Microbe Interactions, 18, 1318–1324.PubMedCrossRefGoogle Scholar
  29. Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48, 888–896.Google Scholar
  30. Lijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54, 949–962.CrossRefGoogle Scholar
  31. Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., et al. (2006). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry, 78, 2113–2120.PubMedCrossRefGoogle Scholar
  32. Matsuda, F., Yonekura-Sakakibara, K., Niida, R., Kuromori, T., Shinozaki, K., & Saito, K. (2009). MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. The Plant Journal, 57, 555–577.PubMedCrossRefGoogle Scholar
  33. McKeehen, J. D., Busch, R. H., & Fulcher, R. G. (1999). Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Journal of Agricultural Food Chemistry, 47, 1476–1482.CrossRefGoogle Scholar
  34. Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous JA level, PR gene expression, and host resistance to fungal infection. Molecular Plant Microbe Interaction, 19, 113–127.CrossRefGoogle Scholar
  35. Mesfin, K. P., Smith, K. P., Dill-Macky, R., Evans, C., Waugh, R., Gustus, C., et al. (2003). Quantitative traits loci for Fusarium head blight resistance in barley detected in a two-rowed by six rowed population. Crop Science, 43, 307–318.CrossRefGoogle Scholar
  36. Mesterhazy, A. (1995). Types and components of resistance to Fusarium head blight in wheat. Plant Breeding, 114, 377–386.CrossRefGoogle Scholar
  37. Mizutani, A., Miki, N., Yukioka, H., Tamura, H., & Masuko, M. (1996). A possible mechanism of control of rice blast disease by a novel alkoxyiminoacetamide fungicide, SSF126. Phytopathology, 86, 295–300.CrossRefGoogle Scholar
  38. Moco, S., Bino, R., de Vos, R. C. H., & Vervoort, J. (2007). Metabolomics technologies and metabolite identification. Trends in Analytical Chemistry, 26, 855–866.CrossRefGoogle Scholar
  39. Naoumkina, M. A., Zhao, Q., Gallego-giraldo, L., Dai, X., Zhao, P. X., & Dixon, R. A. (2010). Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11(6), 829–846.PubMedGoogle Scholar
  40. Nirenberg, H. (1981). A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany, 59, 1599–1609.Google Scholar
  41. Paranidharan, V., Abu-Nada, Y., Hamzehzarghani, H., Kushalappa, A. C., Mamer, O., Dion, Y., et al. (2008). Resistance related metabolites in wheat against Fusarium graminearum and virulence factor, DON. Botany, 86, 1168–1179.CrossRefGoogle Scholar
  42. Poppenberger, F., Berthiller, D., Lucyshyn, T., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278, 47905–47914.PubMedCrossRefGoogle Scholar
  43. Robinson, A., & Mansfield, S. (2009). Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and NIR-based prediction modeling. The Plant Journal, 58, 706–714.PubMedCrossRefGoogle Scholar
  44. Schauer, N., & Fernie, A. R. (2006). Plant metabolomics: towards biological function and mechanism. Trends in Plant Science, 11, 508–516.PubMedCrossRefGoogle Scholar
  45. Schroeder, H. W., & Christensen, J. J. (1963). Factors affecting resistance of wheat to scab by Gibberella zeae. Phytopathology, 53, 831–838.Google Scholar
  46. Siranidou, E., Kang, Z., & Buchenauer, H. (2002). Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to Fusarium head blight. Journal of Phytopathology, 150, 200–208.CrossRefGoogle Scholar
  47. Smith, A. C., Elizabeth, J. W., Grace, O., Ruben, A., & Gary, S. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.PubMedCrossRefGoogle Scholar
  48. Steffenson, B. J. (2003). Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 241–295). St. Paul: APS.Google Scholar
  49. Sumner, W. L., Mendes, P., & Richard, A. D. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836.PubMedCrossRefGoogle Scholar
  50. Tamogami, S., Rakwal, R., & Kodama, O. (1997). Phytoalexin production by amino acid conjugates of JA through induction of naringenin 7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Letters, 401, 239–242.PubMedCrossRefGoogle Scholar
  51. Tautenhahn, R., Böttcher, C., & Neumann, S. (2007). Annotation of LC/ESI-MS mass signals. Proceedings of BIRD 2007 - 1st International Conference on Bioinformatics Research and Development, Springer LNBI 4414.Google Scholar
  52. Tohge, T., & Fernie, A. R. (2009). Web-based resources for mass-spectrometry-based metabolomics: A user’s guide. Phytochemistry, 70, 450–456.PubMedCrossRefGoogle Scholar
  53. Vidhyasekaran, P. (2008). Fungal pathogenesis in plants and crops. Boca Raton: CRC.Google Scholar
  54. Vijayan, P., Shockey, J., Lévesque, C. A., Cook, R. J., & Browse, J. (1998). A role for jasmonate in pathogen defense of Arabidopsis. PNAS, 95, 7209–7214.PubMedCrossRefGoogle Scholar
  55. Vorst, O., de Vos, C. H. R., Lommen, A., Staps, R. V., Visser, R. G. F., Bino, R. J., et al. (2005). A non-directed approach to the differential analysis of multiple LC-MS derived metabolic profiles. Metabolomics, 1, 169–180.CrossRefGoogle Scholar
  56. Walters, D., Raynor, L., Mitchell, A., Walker, R., & Walker, K. (2004). Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia, 157, 87–90.PubMedCrossRefGoogle Scholar
  57. Yara, A., Yaeno, T., Montillet, J. L., Hasegawa, M., Seo, S., Kusumi, K., et al. (2008). Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxylinoleic acid. Biochemical and Biophysical Research Communications, 370, 344–347.PubMedCrossRefGoogle Scholar
  58. Zadoks, J. C., Chang, T. T., & Konzak, B. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar
  59. Zhang, L., & Xing, D. (2008). Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiology, 49, 1092–1111.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2011

Authors and Affiliations

  • G. Kenchappa Kumaraswamy
    • 1
  • Venkatesh Bollina
    • 1
  • Ajjamada C. Kushalappa
    • 1
  • Thin M. Choo
    • 2
  • Yves Dion
    • 3
  • Sylvie Rioux
    • 4
  • Orval Mamer
    • 5
  • Denis Faubert
    • 6
  1. 1.Plant Science DepartmentMcGill UniversitySainte-Anne-de-BellevueCanada
  2. 2.Eastern Cereal and Oilseed Research CentreAgriculture and Agri-Food CanadaOttawaCanada
  3. 3.Centre de recherche sur les grains inc.Saint-Mathieu-de-BeloeilCanada
  4. 4.Centre de recherche sur les grains inc.Ste. FoyCanada
  5. 5.Goodman Cancer Research CentreMcGill UniversityMontréalCanada
  6. 6.Institut de recherches cliniques de MontréalMontréalCanada

Personalised recommendations