Skip to main content
Log in

Reaction of glucosinolate-myrosinase defence system in Brassica plants to pathogenicity factor of Sclerotinia sclerotiorum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The glucosinolate-myrosinase defence system, specific to Brassicales plants, produces toxic volatile compounds during mechanical injury or pathogen attack. The reaction of this system to oxalic acid, known as a pathogenicity factor of Sclerotinia sclerotiorum, is not fully understood. The hydrolysis of glucosinolates was studied at varying conditions in the presence of oxalic acid in the substrate. In a bioassay, colonies of the pathogen were exposed to volatiles from hydrated mustard powder used as a myrosinase and glucosinolate source. The glucosinolate-myrosinase (GSL-M) system was activated in the presence of oxalic acid at a concentration and pH similar to that expected in vivo. Volatile production was inhibited only when the pH fell to 3 or below. It is unlikely that oxalic acid plays a significant role in disarming the GSL-M system during infection of Brassica hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Bellostas, N., Sorensen, J. C., & Sorensen, H. (2007). Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential. Journal of the Science of Food and Agriculture, 87, 1586–94.

    Article  CAS  Google Scholar 

  • Bolton, M. D., Thomma, B. P. H. I., & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Bones, A. M., & Rossiter, J. T. (1996). The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 97, 194–208.

    Article  CAS  Google Scholar 

  • Borek, V., Morra, M. J., Brown, P. D., & McCaffrey, J. P. (1994). Allelochemicals produced during sinigrin decomposition in soil. Journal of Agricultural and Food Chemistry, 42, 1030–1034.

    Article  CAS  Google Scholar 

  • Brown, P. D., & Morra, M. J. (1997). Control of soil-borne plant pests using glucosinolate-containing plants. Advances in Agronomy, 61, 167–231.

    Article  CAS  Google Scholar 

  • Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X., Ji, R., Guo, X., Foster, S. J., Chen, H., Dong, C., et al. (2008). Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 228, 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.

    Google Scholar 

  • Guimaraes, R. L., & Stotz, H. U. (2004). Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology, 136, 3703–3711.

    Google Scholar 

  • Hegedus, D. D., & Rimmer, S. R. (2005). Sclerotinia sclerotiorum: When “to be or not be” a pathogen? FEMS Microbiology Letters, 251, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard, J. A., & Sarwar, M. (1999). Glucosinolate profiles of Australian canola (Brassica napus annua L.) and Indian mustard (Brassica juncea L.) cultivars: implications for biofumigation. Australian Journal of Agricultural Research, 50, 315–324.

    Article  CAS  Google Scholar 

  • Kolkman, J. M., & Kelly, J. D. (2000). An indirect test using oxalate to determine physiological resistance to white mold in common bean. Crop Science, 40, 281–285.

    Article  Google Scholar 

  • Manici, L. M., Lazzeri, L., & Palmieri, S. (1997). In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. Journal of Agricultural and Food Chemistry, 45, 2768–2773.

    Article  CAS  Google Scholar 

  • Mithen, R. (2001). Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regulation, 34, 91–103.

    Article  CAS  Google Scholar 

  • Prusky, D., & Yakoby, N. (2003). Pathogenic fungi: leading or led by ambient pH? Molecular Plant Pathology, 4, 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Rahmanpour, S., Backhouse, D., & Nonhebel, H. M. (2009). Induced tolerance of Sclerotinia sclerotiorum to isothiocyanates and toxic volatiles from Brassica species. Plant Pathology, 58, 479–486.

    Article  CAS  Google Scholar 

  • Sexton, A. C., Kirkgaard, J. A., & Howlett, B. J. (1999). Glucosinolates in Brassica juncea and resistance to Australian isolates of Leptosphaeria maculans, the blackleg fungus. Australian Plant Pathology, 28, 95–102.

    Article  Google Scholar 

  • Smith, B. J., & Kirkegaard, J. A. (2002). In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathology, 51, 585–593.

    Article  CAS  Google Scholar 

  • Wickens, G. E. (2001). Principles and practices: Economic botany. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Rahmanpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmanpour, S., Backhouse, D. & Nonhebel, H.M. Reaction of glucosinolate-myrosinase defence system in Brassica plants to pathogenicity factor of Sclerotinia sclerotiorum . Eur J Plant Pathol 128, 429–433 (2010). https://doi.org/10.1007/s10658-010-9685-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9685-y

Keywords

Navigation