Advertisement

European Journal of Plant Pathology

, Volume 128, Issue 1, pp 113–126 | Cite as

A new approach to modelling the dynamics of oospore germination in Plasmopara viticola

  • Annamaria Vercesi
  • Silvia L. Toffolatti
  • Graziano Zocchi
  • Raffaella Guglielmann
  • Liliana Ironi
Article

Abstract

Oospores, the only overwintering structures of Plasmopara viticola, the causal agent of grapevine downy mildew, are the unique source of inoculum for primary infections in vineyards. We show that their germination dynamics depend on both climatic and endogenous factors. In particular, overwintering in controlled conditions suggests that low temperatures prolong the oospore germinability, while constant or gradually alternating water availability increases germination rates. However, wide fluctuations in germination percentage, observed both in naturally overwintered oospores, and under controlled conditions, indicate an important role for endogenous factors in the germination frequency. Ad hoc experimental assays and microscopic observations highlight an important role for calcium in the germination process. However, for a profound understanding of the biological mechanisms underlying oospore germination, mathematical models of the germination dynamics are needed. But, classical differential models of germination dynamics are, with current knowledge, prohibitive due both to the complexity of the underlying processes and knowledge incompleteness. Then, we propose a hybrid method derived from the integration of qualitative differential models and fuzzy systems.

Keywords

Downy mildew Calcium signalling Grapevine Mathematical modelling System identification 

Notes

Acknowledgements

The Authors would like to thank dr. Simona Rodighiero, CIMAINA—Università degli Studi di Milano for her technical assistance during confocal observations.

Research funded by ARPAV, Project “Biologia e epidemiologia di Plasmopara viticola”, and Regione Lombardia Project n. 1042, “Monitoraggio e simulazione delle epidemie di Plasmopara viticola nei vigneti lombardi”, Piano per la ricerca e lo sviluppo 2007.

References

  1. Abramoff, M. D., Magelhaes, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  2. Ahn, I. P., & Suh, S.-C. (2007). Calcium/calmodulin dependent signaling for prepenetration development of Cochliobolus miyabeanus infecting rice. Journal of General Plant Pathology, 73, 113–120.CrossRefGoogle Scholar
  3. Bellazzi, R., Ironi, L., Guglielmann, R., Ironi, L., & Patrini, C. (2001). A hybrid input-output approach to model metabolic systems: an application to intracellular thiamine kinetics. Journal of Biomedical Informatics, 34, 221–248.CrossRefPubMedGoogle Scholar
  4. Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4, 517–529.CrossRefPubMedGoogle Scholar
  5. Burruano, S., & Ciofalo, G. (1990). Studio della dinamica di germinazione delle oospore di Plasmopara viticola (Berk. et Curt.) Berl. E De Toni. Notiziario Sulle Malattie Delle Piante, 111, 274–287.Google Scholar
  6. Burruano, S., Conigliaro, G., & Di Graziano, M. (1990). Prime indicazioni sull’azione delle basse temperature sulla germinazione delle oospore di Plasmopara viticola. Phytopathologia Mediterranea, 29, 73–75.Google Scholar
  7. Chung, K.-R. (2003). Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Applied and Environmental Microbiology, 69, 1187–1196.CrossRefPubMedGoogle Scholar
  8. Deacon, J. W., & Donaldson, S. P. (1993). Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycological Research, 97, 1153–1171.CrossRefGoogle Scholar
  9. Donaldson, S. P., & Deacon, J. W. (1993a). Changes in motility of Pythium zoospores induced by calcium and calcium-modulating drugs. Mycological Research, 97, 877–883.CrossRefGoogle Scholar
  10. Donaldson, S. P., & Deacon, J. W. (1993b). Role of calcium in adhesion and germination of zoospore cysts of Pythium: a model to explain infection of host plants. Journal of General Microbiology, 138, 2051–2059.Google Scholar
  11. Gobbin, D., Jermini, M., Loskill, B., Pertot, I., Raynal, M., & Gessler, C. (2005). Importance of secondary inoculum of Plasmopara viticola to epidemics of grapevine downy mildew. Plant Pathology, 54, 522–534.CrossRefGoogle Scholar
  12. Guglielmann, R., & Ironi, L. (2005). Generating fuzzy models from deep knowledge: robustness and interpretability issues. Lecture Notes in Artificial Intelligence, 3571, 600–612.Google Scholar
  13. Guglielmann, R., Ironi, L., Liberati, D., & Vercesi, A. (2002). A fuzzy-neural model of the germination of Plasmopara viticola oospores. Notiziario Sulla Protezione Delle Piante, 15, 309–314.Google Scholar
  14. Hardham, A. R. (2007). Cell biology of plant-oomycete interactions. Cellular Microbiology, 9, 31–39.CrossRefPubMedGoogle Scholar
  15. Hill, G. K. (1998). Studies on the germination of Plasmopara viticola oospores with a floating disc test. Bulletin OILB/SROP, 21, 1.Google Scholar
  16. Jang, J. (1993). Anfis: adaptive network based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.CrossRefGoogle Scholar
  17. Judelson, H. S., & Blanco, F. A. (2005). The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews. Microbiology, 3, 47–58.CrossRefPubMedGoogle Scholar
  18. Judelson, H. S., & Roberts, S. (2002). Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryotic Cell, 1, 687–695.CrossRefPubMedGoogle Scholar
  19. Kolber, M. A., & Haynes, D. H. (1981). Fluorescence studies of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes. Biophysical Journal, 36, 369–391.CrossRefPubMedGoogle Scholar
  20. Kuipers, B. J. (1994). Qualitative reasoning: Modeling and simulation with incomplete knowledge. Cambridge: MIT Press.Google Scholar
  21. Lee, M.-H., & Bostock, R. M. (2006). Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytpathology, 96, 1072–1080.CrossRefGoogle Scholar
  22. Rossi, V., Giosuè, S., Girometta, B., & Bugiani, R. (2002). Influenza delle condizioni meteorologiche sulle infezioni primarie di Plasmopara viticola in Emilia-Romagna. In A. Brunelli & A. Canova (Eds.), Atti Giornate Fitopatologiche (pp. 263–270). Bologna: CLUEB.Google Scholar
  23. Rossi, V., Caffi, T., Giosuè, S., & Bugiani, R. (2008a). A mechanistic model simulating primary infections of downy mildew in grapevine. Ecological Modelling, 212, 480–491.CrossRefGoogle Scholar
  24. Rossi, V., Caffi, T., Bugiani, R., Spanna, F., & Della Valle, D. (2008b). Estimating the germination dynamics of Plasmopara viticola oospores using hydro-thermal time. Plant Pathology, 57, 216–226.CrossRefGoogle Scholar
  25. Serra, S., & Borgo, M. (1995). Indagini sulla maturazione e germinazione delle oospore di Plasmopara viticola svernate in condizioni naturali. Petria, 5, 91–103.Google Scholar
  26. Shaw, B. D., & Hoch, H. C. (2000). Ca2+ regulation of Phyllosticta ampelicida pycniospore germination and appressorium formation. Fungal Genetics and Biology, 31, 43–53.CrossRefPubMedGoogle Scholar
  27. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15, 116–132.Google Scholar
  28. Takahashi, A., Camacho, P., Lechleiter, J. D., & Herman, B. (1999). Measurement of intracellular calcium. Physiological Reviews, 79, 1089–1125.PubMedGoogle Scholar
  29. Toffolatti, S. L. (2007). Endogenous and exogenous factors affecting the oospore germination of Plasmopara viticola (Berk et Curt.) Berl. & De Toni. PhD Thesis, University of Milan, pp. 117.Google Scholar
  30. Torralba, S., & Heath, I. B. (2001). Cytoskeletal and Ca2+ regulation of hyphal tip growth and initiation. Current Topics in Developmental Biology, 51, 135–187.CrossRefPubMedGoogle Scholar
  31. Tsien, R. Y., & Pozzan, T. (1989). Measurement of cytosolic free Ca2+ with Quin2. Methods in Enzymology, 172, 230–244.CrossRefPubMedGoogle Scholar
  32. Uhm, K.-H., Ahn, I.-P., Kim, S., & Lee, Y.-H. (2003). Calcium/calmodulin-dependent signaling for prepenetration development in Colletotrichum gloeosporioides. Phytopathology, 93, 82–87.CrossRefPubMedGoogle Scholar
  33. Vercesi, A., Tornaghi, R., Sant, S., Burruano, S., & Faoro, F. (1999). A cytological and ultrastructural study on the maturation and germination of oospores of Plasmopara viticola from overwintering vine leaves. Mycological Research, 103, 193–202.CrossRefGoogle Scholar
  34. Vercesi, A., Sirtori, C., Vavassori, A., Setti, E., & Liberati, D. (2000). Estimating germinability of Plasmopara viticola oospores by means of neural networks. Cellular Engineering, 38, 109–112.Google Scholar
  35. Wang, L. (1994). Adaptive fuzzy systems and control: Design and stability analysis. Englewood Cliff: Prentice-Hall.Google Scholar
  36. Warburton, A. J., & Deacon, J. W. (1998). Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genetics and Biology, 25, 54–62.CrossRefPubMedGoogle Scholar
  37. Zachos, D. G. (1959). Recherches sur la biologie et l’épidémiologie du mildiou de la vigne en Grèce. Annales de l’Institut phytopathologique Benaki, 2, 193–335.Google Scholar
  38. Zelter, A., Bencina, M., Bowman, B. J., Yarden, O., & Read, N. D. (2004). A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology, 41, 827–841.CrossRefPubMedGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Annamaria Vercesi
    • 1
  • Silvia L. Toffolatti
    • 1
  • Graziano Zocchi
    • 1
  • Raffaella Guglielmann
    • 2
  • Liliana Ironi
    • 3
  1. 1.DIPROVEUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di MatematicaUniversità degli Studi di PaviaPaviaItaly
  3. 3.IMATI-CNRPaviaItaly

Personalised recommendations