European Journal of Plant Pathology

, Volume 129, Issue 2, pp 267–280 | Cite as

Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp.

  • Michaela Sedlářová
  • Marek Petřivalský
  • Jana Piterková
  • Lenka Luhová
  • Jindra Kočířová
  • Aleš Lebeda


The role of nitric oxide and reactive oxygen species, molecules indispensable for plant-pathogen signalling, was studied in the Lactuca spp.-Bremia lactucae pathosystem. Using a leaf disc model the translaminar effect of various compounds affecting their metabolism was studied by light microscopy. Time course studies revealed a slowdown in the development of B. lactucae (race BL16) infection structures by rutin (scavenger of reactive nitrogen and oxygen species) and SNP (NO donor) within 48 h post inoculation, followed by a retardation of sporulation. Application of the specific NO scavenger, PTIO, accelerated penetration of B. lactucae but had no further effects on the plant-pathogen interaction. Inhibitors of NO synthase (L-NAME) and nitrate reductase (sodium tungstate) did not influence pathogen development. Our results suggest that drastic change in the NO: hydrogen peroxide ratio seems to determine the pathogen’s fate. NO synthase-like activity significantly increased early after B. lactucae challenge in resistant L. virosa. Confocal laser scanning microscopy revealed the accumulation of nitric oxide in the penetrated cells, pointing to a role in the initiation of the hypersensitive reaction. The tips of germ tubes and appressoria of B. lactucae also accumulated NO, suggesting an essential role for this molecule in penetration of the biotrophic pathogen. Additionally, temporal changes in endogenous levels of rutin and quercetin in extracts from Lactuca spp. leaves will be discussed in connection to their role as part of the antioxidative machinery that influences the plants’ susceptibility/resistance to lettuce downy mildew.


Antioxidants Bremia lactucae Lactuca sativa Lactuca saligna Lactuca virosa Oomycete Oxidative stress Quercetin Rutin Sodium nitroprusside 



4-amino-5-(N-methylamino)-2′,7′-difluorofluorescein diacetate


hours post inoculation


hypersensitive response




nitric oxide synthase


nitrate reductase




primary vesicle


reactive oxygen species


reactive nitrogen species


sodium nitroprusside


standard deviation


secondary vesicle



Authors thank Mrs. Danuše Krátká and M.A. Iveta Hnízdová for proceeding of light microscopy samples, and Dr. Brigitte Mauch-Mani (Université de Neuchâtel, Switzerland) for critical reading of the manuscript. Provision of Lactuca virosa seeds by Prof. D. A. C. Pink (Warwick HRI, Warwick University, U.K.) as well as cooperation with Olympus Czech Group (Prague, Czech Republic) is gratefully acknowledged. The work was financed by the Czech Ministry of Education, Youth and Sports (grants No. MSM 6198959215 and 2E08018).


  1. Arasimowicz, M., & Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Science, 172, 876–887.CrossRefGoogle Scholar
  2. Asai, S., & Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 22, 619–629.CrossRefPubMedGoogle Scholar
  3. Bethke, P. C., Badger, M. R., & Jones, R. L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell, 16, 332–341.CrossRefPubMedGoogle Scholar
  4. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91, 179–194.CrossRefPubMedGoogle Scholar
  5. Bolwell, G. P., & Daudi, A. (2009). Reactive oxygen species in plant–pathogen interactions. In L. A. del Río & A. Puppo (Eds.), Reactive oxygen species in plant signalling (pp. 113–133). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  6. Chaki, M., Fernández-Ocaña, A. M., Valderrama, R., Carreras, A., Esteban, F. J., Luque, F., et al. (2009). Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower–mildew interaction. Plant and Cell Physiology, 50, 665–679.CrossRefGoogle Scholar
  7. Cooney, R. V., Harwood, P. J., Custer, L. J., & Franke, A. A. (1994). Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environmental Health Perspectives, 102, 460–462.CrossRefPubMedGoogle Scholar
  8. Corpas, F. J., Hayashi, M., Mano, S., Nishimura, M., & Barroso, J. B. (2009). Peroxisomes are required for in vivo nitric oxide (NO) accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiology. doi: 10.1104/pp.109.146100.PubMedGoogle Scholar
  9. De Gara, L., de Pinto, M. C., & Tommasi, F. (2003). The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.CrossRefGoogle Scholar
  10. Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 98, 13454–13459.CrossRefPubMedGoogle Scholar
  11. Delledonne, M., Murgia, I., Ederle, D., Sbicego, P., Biondani, A., Polverari, A., et al. (2002). Reactive oxygen intermediates modulate nitric oxide signalling in the plant hypersensitive disease-resistance response. Plant Physiology and Biochemistry, 40, 605–610.CrossRefGoogle Scholar
  12. Delledonne, M., Polverari, A., & Murgia, I. (2003). The functions of nitric oxide-mediated signalling and changes in gene expression during the hypersensitive response. Antioxidants and Redox Signalling, 5, 33–41.CrossRefGoogle Scholar
  13. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.CrossRefPubMedGoogle Scholar
  14. Grace, S. C. (2005). Phenolics as antioxidants. In N. Smirnoff (Ed.), Antioxidants and reactive oxygen species in plants (pp. 141–168). Oxford: Blackwell Scientific.CrossRefGoogle Scholar
  15. Hevel, J. M., & Marletta, M. A. (1994). Nitric-oxide synthase assays. Methods in Enzymology, 233, 250–258.CrossRefPubMedGoogle Scholar
  16. Laughton, M. J., Halliwell, B., Evans, P. J., Robin, J., & Hoult, S. (1989). Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology, 38, 2859–2865.CrossRefPubMedGoogle Scholar
  17. Lebeda, A., & Pink, D. A. C. (1998). Histological aspects of the response of wild Lactuca spp. and their hybrids, with L. sativa to lettuce downy mildew (Bremia lactucae). Plant Pathology, 47, 723–736.Google Scholar
  18. Lebeda, A., & Reinink, K. (1991). Variation in the early development of Bremia lactucae on lettuce cultivars with different levels of field resistance. Plant Pathology, 40, 232–237.CrossRefGoogle Scholar
  19. Lebeda, A., & Reinink, K. (1994). Histological characterization of resistance in Lactuca saligna to lettuce downy mildew (Bremia lactucae). Physiological and Molecular Plant Pathology, 44, 125–139.CrossRefGoogle Scholar
  20. Lebeda, A., Pink, D. A. C., & Mieslerová, B. (2001). Host-parasite specificity and defense variability in the Lactuca spp.-Bremia lactucae pathosystem. Journal of Plant Pathology, 83, 25–35.Google Scholar
  21. Lebeda, A., Pink, D. A. C., & Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 85–117). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  22. Lebeda, A., Sedlářová, M., Lynn, J., & Pink, D. A. C. (2006). Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa × L. serriola hybrids and Bremia lactucae. European Journal of Plant Pathology, 115, 431–441.CrossRefGoogle Scholar
  23. Lebeda, A., Petrželová, I., & Maryška, Z. (2008a). Structure and variation in the wild-plant pathosystem: Lactuca serriola-Bremia lactucae. European Journal of Plant Pathology, 122, 127–146.CrossRefGoogle Scholar
  24. Lebeda, A., Sedlářová, M., Petřivalský, M., & Prokopová, J. (2008b). Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp.-Bremia lactucae. European Journal of Plant Pathology, 122, 71–89.CrossRefGoogle Scholar
  25. Lebeda, A., Doležalová, I., Křístková, E., Kitner, M., Petrželová, I., Mieslerová, B., et al. (2009). Wild Lactuca germplasm for lettuce breeding: current status, gaps and challenges. Euphytica, 170, 15–34.CrossRefGoogle Scholar
  26. Miller, E. W., & Chang, C. J. (2007). Fluorescent probes for nitric oxide and hydrogen peroxide in cell signalling. Current Opinion in Chemical Biology, 11, 620–625.CrossRefPubMedGoogle Scholar
  27. Mur, L. A. J., Carver, T. L., & Prats, E. (2006). NO way to live; the various roles of nitric oxide in plant-pathogen interactions. Journal of Experimental Botany, 57, 489–505.CrossRefPubMedGoogle Scholar
  28. Mur, L. A. J., Kenton, P., Lloyd, A. J., Ougham, H., & Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59, 501–520.CrossRefPubMedGoogle Scholar
  29. Norwood, J. M., Crute, I. R., & Lebeda, A. (1981). The location and characteristics of novel sources of resistance to Bremia lactucae Regel (Downy mildew) in wild Lactuca L. species. Euphytica, 30, 659–668.CrossRefGoogle Scholar
  30. Panstruga, R. (2003). Establishing compatibility between plants and obligate biotrophic pathogens. Current Opinion in Plant Biology, 6, 320–326.CrossRefPubMedGoogle Scholar
  31. Petřivalský, M., Kočířová, J., Sedlářová, M., Piterková, J., Luhová, L., & Lebeda, A. (2007). On the role of nitric oxide in Bremia lactucae pathogenesis on Lactuca sativa. In A. Lebeda & P. T. N. Spencer-Phillips (Eds.), Advances in downy mildew research (Vol. 3, pp. 175–184). Olomouc: Palacký University in Olomouc and JOLA.Google Scholar
  32. Phillips, A. J., Anderson, V. L., Robertson, E. J., Secombes, C. J., & van West, P. (2008). New insights into animal pathogenic oomycetes. Trends in Microbiology, 16, 13–19.CrossRefPubMedGoogle Scholar
  33. Piterková, J., Petřivalský, M., Luhová, L., Mieslerová, B., Sedlářová, M., & Lebeda, A. (2009). Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Molecular Plant Pathology, 10, 501–513.CrossRefPubMedGoogle Scholar
  34. Prats, E., Carver, T. L. W., & Mur, L. A. J. (2008). Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Research in Microbiology, 159, 476–480.CrossRefPubMedGoogle Scholar
  35. Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., & Kawakita, K. (2006). Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiology, 47, 689–697.CrossRefPubMedGoogle Scholar
  36. Sedlářová, M., Lebeda, A., & Pink, D. A. C. (2001). The early stages of interaction between effective and non-effective race-specific genes in Lactuca sativa, wild Lactuca spp. and Bremia lactucae (race NL16). Journal of Plant Diseases and Protection, 108, 477–489.Google Scholar
  37. Sedlářová, M., Luhová, L., Petřivalský, M., & Lebeda, A. (2007). Localization and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiology and Biochemistry, 45, 607–616.CrossRefPubMedGoogle Scholar
  38. Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121, 267–280.CrossRefGoogle Scholar
  39. Stöhr, C., & Ullrich, W. R. (2002). Generation and possible roles of NO in plant roots and their apoplastic space. Journal of Experimental Botany, 53, 2293–2303.CrossRefPubMedGoogle Scholar
  40. Tománková, K., Luhová, L., Petřivalský, M., Peč, P., & Lebeda, A. (2006). Biochemical aspects of reactive oxygen species formation in interaction Lycopersicon spp.-Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68, 22–32.CrossRefGoogle Scholar
  41. Vandelle, E., & Delledonne, M. (2008). Methods for nitric oxide detection during plant–pathogen interactions. Methods in Enzymology, 437, 573–592.CrossRefGoogle Scholar
  42. Wendehenne, D., Durner, J., & Klessig, D. F. (2004). Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology, 7, 449–455.CrossRefPubMedGoogle Scholar
  43. Wilson, I. D., Neill, S. J., & Hancock, J. T. (2008). Nitric oxide synthesis and signalling in plants. Plant, Cell and Environment, 31, 622–631.CrossRefPubMedGoogle Scholar
  44. Yamasaki, H. (2000). Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 1477–1488.CrossRefGoogle Scholar
  45. Yoshioka, H., Asai, S., Yoshioka, M., & Kobayashi, M. (2009). Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Molecules and Cells, 28, 321–329.CrossRefPubMedGoogle Scholar
  46. Zaninotto, F., La Camera, S., Polverari, A., & Delledonne, M. (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiology, 141, 379–383.CrossRefPubMedGoogle Scholar
  47. Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., & Lamb, C. (2004). Genetic elucidation of nitric oxide signalling in incompatible plant-pathogen interactions. Plant Physiology, 136, 2875–2888.CrossRefPubMedGoogle Scholar
  48. Zhang, N. W., Lindhout, P., Niks, R. E., & Jeuken, M. J. W. (2009). Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages. Plant Pathology, 58, 923–932.CrossRefGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Michaela Sedlářová
    • 1
  • Marek Petřivalský
    • 2
  • Jana Piterková
    • 2
  • Lenka Luhová
    • 2
  • Jindra Kočířová
    • 2
  • Aleš Lebeda
    • 1
  1. 1.Department of Botany, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  2. 2.Department of Biochemistry, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations