European Journal of Plant Pathology

, Volume 127, Issue 4, pp 465–481 | Cite as

Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases

  • Lucius Tamm
  • Barbara Thürig
  • Christian Bruns
  • Jacques G. Fuchs
  • Ulrich Köpke
  • Matias Laustela
  • Carlo Leifert
  • Nicole Mahlberg
  • Bruno Nietlispach
  • Christoph Schmidt
  • Felix Weber
  • Andreas Fließbach
Article

Abstract

The impact of soil type, long-term soil management, and short-term fertility input strategies on the suppressiveness of soils against soil-borne (Ocimum basilicumRhizoctonia solani, Lepidium sativumPythium ultimum) as well as air-borne (Lycopersicon esculentumPhytophthora infestans, Arabidopsis thalianaHyaloperonospora parasitica) diseases was studied. Soils from field trials established in five European sites with contrasting pedo-climatic conditions were examined. Sites included (i) a long-term management field trial comparing organic and conventional farming systems (DOK-trial, Therwil, Switzerland) (ii) a short-term fertility input field trial comparing mineral and organic matter fertilisation regimes (Bonn (BON), Germany) (iii) two short-term fertility input field trials (Stockbridge (STC) and Tadcaster (TAD), UK) comparing the impact of farmyard manure, composted farmyard manure, and chicken manure pellet amendements and (iv) soil from a site used as a reference (Reckenholz (REC), Switzerland). Soil type affected disease suppressiveness of the four pathosystems signficantly, indicating that soils can not only affect the development of soil-borne, but also the resistance of plants to air-borne diseases at relevant levels. Suppressiveness to soil- and air-borne diseases was shown to be affected by soil type, but also by long-term management as well as short-term fertility inputs.

Keywords

Ocimum basilicum Lepidium sativum Lycopersicon esculentum Arabidopsis thaliana Soil characteristics 

References

  1. Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press Limited.Google Scholar
  2. Berner, A., Gloor, S., Fuchs, J. G., Tamm, L., & Mäder, P. (2002). Healthy soils - healthy plants. Paper presented at the 14th IFOAM Organic World Congress, Victoria, Canada.Google Scholar
  3. Blume, H.-P., Deller, B., Leschber, R., Paetz, A., Schmidt, S., & Wilke, B.-M. (2000). Handbuch der Bodenuntersuchung. Berlin: Beuth.Google Scholar
  4. Bossio, D. A., Scow, K. M., Gunpala, N., & Graham, K. J. (1998). Determination of soil microbial communities: effect of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36, 1–12.CrossRefPubMedGoogle Scholar
  5. Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837–842.CrossRefGoogle Scholar
  6. Chu, H., Lin, X., Fujii, T., Morimoto, S., Yagi, K., Hu, J., et al. (2007). Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39, 2971–2976.CrossRefGoogle Scholar
  7. De Meyer, G., & Höfte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology, 87, 588–593.CrossRefPubMedGoogle Scholar
  8. De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104, 279–286.CrossRefGoogle Scholar
  9. De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Métraux, J.-P., & Höfte, M. (1999). Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Molecular Plant Microbe Interactions, 12, 450–458.CrossRefPubMedGoogle Scholar
  10. Doran, J. W., Sarrantonio, M., & Lieberg, M. A. (1996). Soil health and sustainability. Advances in Agronomy, 56, 1–54.CrossRefGoogle Scholar
  11. Fuchs, J. G. (2002). Practical use of quality compost for plant health and vitality improvement. In H. Insam, N. Riddech, & S. Klammer (Eds.), Microbiology of composting (pp. 435–444). Heidelberg: Springer Verlag.Google Scholar
  12. Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.CrossRefPubMedGoogle Scholar
  13. Govaerts, B., Mezzalama, M., Unno, Y., Sayre, D. D., Luna-Guido, M., Vanherck, K., et al. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18–30.CrossRefGoogle Scholar
  14. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.CrossRefPubMedGoogle Scholar
  15. Hoitink, H. A. J., Van Doren, D. M. J., & Schmitthenner, A. F. (1977). Suppression of Phytophthora cinnamomi in a composted hardwood bark potting medium. Phytopathology, 67, 561–565.CrossRefGoogle Scholar
  16. Iavicoli, A., Boutet, E., Buchala, A., & Métraux, J. P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant Microbe Interactions, 10, 851–858.CrossRefGoogle Scholar
  17. Inbar, E., Green, S. J., Hadar, Y., & Minz, D. (2005). Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microbial Ecology, 50, 73–81.CrossRefPubMedGoogle Scholar
  18. Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., & Insam, H. (2006). Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biology & Biochemistry, 38, 1092–1100.CrossRefGoogle Scholar
  19. Jäggi, W. (1976). Die Bestimmung der CO2-Bildung als Mass der bodenbiologischen Aktivität. Schweizerische Landwirtschaftliche Forschung, 15, 371–380.Google Scholar
  20. Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39, 1–23.CrossRefGoogle Scholar
  21. Kandeler, E. (1993). Bestimmung der Aggregatstabilität. In F. Schinner, R. Öhlinger, E. Kandeler, & R. Margesin (Eds.), Bodenbiologische Arbeitsmethoden (pp. 351–355). Berlin: Springer.Google Scholar
  22. Kloepper, J. E., Rodriguez-Ubana, R., Zehnder, G. W., Murphy, J. F., Sikora, E., & Fernandez, C. (1999). Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 28, 21–26.CrossRefGoogle Scholar
  23. Knudsen, I. M. B., Larsen, K. M., Jensen, D. F., & Hockenhull, J. (2002). Potential suppressiveness of different field soils to Pythium damping-off of sugar beat. Applied Soil Ecology, 21, 119–129.CrossRefGoogle Scholar
  24. Litterick, A. M., Harrier, L., Wallace, C., Watson, C. A., & Wood, M. (2004). The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production - A review. Critical Reviews in Plant Sciences, 23, 453–479.CrossRefGoogle Scholar
  25. Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.CrossRefPubMedGoogle Scholar
  26. Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Jossi, W., Widmer, F., et al. (2006). The DOK experiment (Switzerland). In J. Raupp, C. Pekrun, M. Oltmanns, & U. Köpke (Eds.), Long-term field experiments in organic farming (pp. 41–58). Bonn: Koester.Google Scholar
  27. Mehlich, A. (1984). Mehlich-3 soil test extractant: a modification of Mehlich-2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416.CrossRefGoogle Scholar
  28. Menzies, J. G. (1959). Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology, 49, 648–652.Google Scholar
  29. Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., & Steinberg, C. (2006). Response of soil microbial communities to compost amendments. Soil Biology & Biochemistry, 38, 460–470.CrossRefGoogle Scholar
  30. Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E., Van Pelt, J. A., & Van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8, 1225–1237.CrossRefPubMedGoogle Scholar
  31. Press, C. M., Wilson, M., Tuzun, S., & Kloepper, J. W. (1997). Salicylic acid produced by Serratia marcescens 90–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Molecular Plant-Microbe Interactions, 10, 761–768.CrossRefGoogle Scholar
  32. Rotenberg, D., Joshi, R., Benitez, M.-S., Chapin, L. G., Camp, A., Zumpetta, C., et al. (2007). Farm management effects on rhizosphere colonization by native populations of 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. and their contributions to crop health. Phytopathology, 97, 756–766.CrossRefPubMedGoogle Scholar
  33. Ryu, C.-M., Hu, C.-H., Reddy, M. S., & Kloepper, J. E. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160, 413–420.CrossRefGoogle Scholar
  34. Serra-Wittling, C., Houot, S., & Alabouvette, C. (1996). Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biology & Biochemistry, 28, 1207–1214.CrossRefGoogle Scholar
  35. Shipton, P. J., Cook, R. J., & Sitton, J. W. (1973). Occurrence and transfer of a biological factor in soil that suppresses take-all of wheat in Eastern Washington. Phytopathology, 63, 511–517.Google Scholar
  36. Stutz, E. W., Défago, G., & Kern, H. (1986). Naturally occurring fluorescent Pseudomonads involved in suppression of black root rot of tobacco. Phytopathology, 76, 181–185.CrossRefGoogle Scholar
  37. Tamm, L. (2001). Organic agriculture: development and state of the art. Journal of Environmental Monitoring, 3, 92–96.CrossRefGoogle Scholar
  38. Theodore, M., & Toribio, J. A. (1995). Suppression of Pythium aphanidermatum in composts prepared from sugarcane factory residues. Plant and Soil, 177, 219–223.CrossRefGoogle Scholar
  39. Thuerig, B., Fliessbach, A., Berger, N., Fuchs, J., Kraus, N., Mahlberg, N., et al. (2009). Re-establishment of suppressiveness to soil- and air-borne diseases by re-inoculation of soil microbial communities. Soil Biology & Biochemistry,Google Scholar
  40. Vallad, G. E., Cooperband, L., & Goodman, R. M. (2003). Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiological and Molecular Plant Pathology, 63, 65–77.CrossRefGoogle Scholar
  41. Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.CrossRefGoogle Scholar
  42. Van Elsas, J. D., Garbeva, P., & Salles, J. (2002). Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13, 29–40.CrossRefPubMedGoogle Scholar
  43. Van Loon, L. C., & Bakker, A. H. M. (2005). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 39–66). Dordrecht: Springer.Google Scholar
  44. Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.CrossRefPubMedGoogle Scholar
  45. Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van’T Westende, Y. A. M., Hartog, F., & Van Loon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interactions, 10, 716–724.CrossRefPubMedGoogle Scholar
  46. Widmer, F., Fliessbach, A., Laczko, E., Schulze-Aurich, J., & Zeyer, J. (2001). Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biolog™-analyses. Soil Biology & Biochemistry, 33, 1029–1036.CrossRefGoogle Scholar
  47. Wiseman, B. M., Neate, S. M., Keller, K. O., & Smith, S. E. (1996). Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature. Soil Biology & Biochemistry, 28, 727–732.CrossRefGoogle Scholar

Copyright information

© KNPV 2010

Authors and Affiliations

  • Lucius Tamm
    • 1
  • Barbara Thürig
    • 1
  • Christian Bruns
    • 2
  • Jacques G. Fuchs
    • 1
  • Ulrich Köpke
    • 4
  • Matias Laustela
    • 1
    • 5
  • Carlo Leifert
    • 3
  • Nicole Mahlberg
    • 1
  • Bruno Nietlispach
    • 1
  • Christoph Schmidt
    • 3
  • Felix Weber
    • 1
  • Andreas Fließbach
    • 1
  1. 1.Research Institute of Organic Agriculture (FiBL)FrickSwitzerland
  2. 2.University of KasselWitzenhausenGermany
  3. 3.Nafferton Ecological Farming Group (NEFG)University of NewcastleNewcastle-upon-TyneUK
  4. 4.Institute of Organic AgricultureUniversity of BonnBonnGermany
  5. 5.FriedliPartner AGZürichSwitzerland

Personalised recommendations