Skip to main content

Advertisement

Log in

The effect of different carbon sources on phenotypic expression by Fusarium graminearum strains

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Two Fusarium graminearum strains were cultured in glucose yeast extract peptone broth or minimal medium broth to measure the production of mycelial biomass, pH, mycotoxins, and aurofusarin pigment, when limited to single carbon sources (at 1%), including xylan, cellulose, starch, or glucose. A random complete block design with factorial arrangement and analysis of variance at a significance level of 0.01 were employed to test for treatment differences. Overall, the F. graminearum strains produced significantly more biomass, deoxynivalenol, and aurofusarin with xylan than with cellulose. No significant differences were found in terms of 15–acetyldeoxynivalenol production from the four carbon sources. The presence of significant interactions between the strains, carbon sources, and media led to the following specific differences. In yeast extract peptone broth, R-9828 strain yielded significantly more deoxynivalenol production with xylan than cellulose and R-9832 produced significantly more mycelium (biomass) with xylan than cellulose. R-9828 strain yielded significantly more deoxynivalenol production than the R-9832 strain. Also in yeast extract peptone broth, cellulose led to significantly higher pH values than other carbons, which might be due to the limited ability of the Fusarium strains to utilize cellulose as an energy source. Aurofusarin was the only expressed analyte to show a significant difference in minimal medium broth, and R-9832 produced significantly more aurofusarin with xylan than with cellulose in the broth. These results suggest that xylan may induce Fusarium growth and deoxynivalenol production to assist the infection process and may support the theory that F. graminearum invades through xylan in the cell walls of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

AU:

Absorbance Unit

3-ADON:

3-acetyldexynivalenol

15-ADON:

5-acetyldeoxynivalenol

CMC:

carboxymethycellulose

CLA:

carnation leaf agar

DON:

deoxynivalenol

FHB:

Fusarium head blight

GYEP:

glucose yeast extract peptone broth

HPLC:

high performance liquid chromatography

MM:

Minimal medium broth

NIV:

nivalenol

PDA:

photodiode array detector

RCBD:

random complete block design

ZEN:

zeralenone

References

  • Bell, A. A., Wheeler, M. H., Liu, J. G., & Stipanovic, R. D. (2003). United States Department of Agriculture—Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Management Science, 59, 736–747.

    Article  CAS  PubMed  Google Scholar 

  • Bily, A. C., Reid, L. M., Savard, M. E., Reddy, R., & Blackwell, B. A. (2004). Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia, 157, 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Booth, C. (1971). The genus Fusarium. Surrey: Commonwealth Mycological Institute.

    Google Scholar 

  • Buchenauer, H., & Kang, Z. (2004). Ultrastructural studies on infection process of Fusarium Head Blight in resistant and susceptible wheat genotypes. Paper presented at the 2nd International Symposium on Fusarium Head Blight Incorporating the 8th European Fusarium Seminar, Orlando, Florida, December.

  • Burkhead, K. D. (1990). Production, characterization, and biogenesis of aurofusarin from a new strain of Fusarium graminearum. Dissertation, University of Iowa.

  • Bushnell, W. R., Hazen, B. E., & Pritsch, C. (2003). Histology and physiology of Fusarium head blight. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 44–83). Minnesota: The American Phytopathological Society.

    Google Scholar 

  • Carpita, N. C., Defernez, M., Findlay, K., Wells, B., Shoue, D. A., Catchpole, G., et al. (2001). Cell wall architecture of the elongating maize coleoptile. Plant Physiology, 127, 551–565.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, D. M., Kazan, K., & Manners, J. M. (2009). Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 46, 604–613.

    Article  CAS  PubMed  Google Scholar 

  • Giesbrecht, F. G., & Gumpertz, M. L. (2004). Planning, construction, and statistical analysis of comparative experiments. Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.

    Article  CAS  Google Scholar 

  • Grabber, J. H., Ralph, J., Lapierre, C., & Barriere, Y. (2004). Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. Plant Biology and Pathology, 327, 455–465.

    CAS  Google Scholar 

  • Hellweg, M. (2003). Molecular, biological and biochemical studies of proteolytic enzymes of the cereal pathogen F. graminearum, Inaugural Dissertation, Retrieved September 21, 2006, from www.deposit.ddb.de.

  • Hinkelmann, K. (2004). Evaluation and interpreting interactions. Technical Report number 04–5. Retrieved November 1, 2006, from Virginia Polytechnic Institute and State University, Department of Statistics Web site: www.stat.org.vt.edu/dept/web-e/tech_reports/TechReport04-6.pdf.

  • Izydorczyk, M. S., & Biliaderis, C. G. (1995). Cereal arabinoxulans: advances in structure and physicochemical properties. Carbohydrate Polymers, 28, 33–48.

    Article  CAS  Google Scholar 

  • Izydorczyk, M. S., & MacGregor, A. W. (2000). Evidence of intermolecular interactions of β-glucans and arabinoxylans. Carbohydrate Polymers, 41, 417–420.

    Article  CAS  Google Scholar 

  • Jansen, C., von Wettstein, D., Schafer, W., Kogel, K. H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of The United States of America, 102,16892–16897.

    Google Scholar 

  • Jiao, F., Kawakami, A., & Nakajima, T. (2008). Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiology Letters, 285, 212–219.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Z., & Buchenauer, H. (1999). Immunocytochemical localization of fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiological and Molecular Plant Pathology, 55, 275–288.

    Article  CAS  Google Scholar 

  • Kang, Z., & Buchenauer, H. (2000). Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. Journal of Phytopathology, 148, 263–275.

    Article  CAS  Google Scholar 

  • Kang, Z., Zingen-Sell, I., & Buchenauer, H. (2005). Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue. European Journal of Plant Pathology, 111, 18–28.

    Article  Google Scholar 

  • Leschine, S. B. (1995). Cellulose degradation in anaerobic environments. Annual Reviews of Microbiology, 49, 399–426.

    Article  CAS  Google Scholar 

  • Lysoe, E., Klemsdal, S. S., Bone, K. R., Frandsen, R. J. N., Johansen, T., Thrane, U., et al. (2006). The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Applied and Environmental Microbiology, 72, 3924–3932.

    Google Scholar 

  • McCormick, S. (2003). The role of DON in pathogenicity. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 165–184). St. Paul, Minnesota: The American Phytopathological Society.

    Google Scholar 

  • Medentsev, A. G., Kotik, A. N., Trufanova, V. A., & Akimenko, V. K. (1993). Identification of an aurofusarin from Fusarium graminearum that causes egg quality deterioration in hens. Applied Biochemistry and Microbiology, 29, 406–409.

    Google Scholar 

  • Miller, J. D., & Greenhalgh, R. (1985). Nutrient effects on the biosynthesis of trichothecenes and other metabolites by Fusarium graminearum. Mycologia, 77, 130–136.

    Article  CAS  Google Scholar 

  • O’Donnell, K., Kistler, H. C., Tacke, B. K., & Casper, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 97, 7905–7910.

    Article  PubMed  Google Scholar 

  • Oshima,T. C., & McCarty, F. (2006). Factorial Analysis of Variance Statistically significant interactions: what’s the next step? Retrieved September 2006 1 from Georgia State University web site: www.gsu.edu/∼epstco/aeraStudent.pdf.

  • Pestka, J. J., Bahrawy, A., & Hart, L. P. (1985). Deoxynivalenol and 15-monoacetyl deoxynivalenol production by Fusarium graminearum R6576 in liquid media. Mycopathologia, 91, 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Proctor, R. H., Desjardins, A. E., McCormick, S. P., Plattner, R. D., Alexander, N. J., & Brown, D. W. (2002). Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fsarium. European Journal of Plant Pathology, 108, 691–698.

    Article  CAS  Google Scholar 

  • Schwarz, P. B., Schwarz, J. G., Zhou, A., Prom, L. K., & Steffenson, B. J. (2001). Effect of Fusarium graminearum and F. poae infection on barley and malt quality. Monatsschrift für Brauwissenschaft, 54, 55–63.

    CAS  Google Scholar 

  • Schwarz, P. B., Jones, B. L., & Steffenson, B. J. (2002). Enzymes associated with Fusarium infection of barley. Journal of the American Society of Brewing Chemists, 60, 130–134.

    CAS  Google Scholar 

  • Shibata, S., Morishita, E., Takeda, T., & Sakata, K. (1968). Metabolic products of fungi. XXVIII. The structure of anrofusarin. Chemistry and Pharmaceutical Bulletin, 16, 405–410.

    CAS  Google Scholar 

  • Siranidou, E., Kang, Z., & Buchenauer, H. (2002). Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to Fusarium head blight. Journal of Phytopathology, 150, 200–208.

    Article  Google Scholar 

  • Stergiopoulos, L., Zwiers, L., & Maarten, A. (2002). Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding casete and major facilitator superfamily. European Journal of Plant Pathology, 108, 719–734.

    Article  CAS  Google Scholar 

  • Voigt, C. A., Scheidt, B. V., Gacser, A., Kassner, H., Lieberei, R., Schafer, W., et al. (2007). Enhanced mycotoxin production of a lipase-deficient Fusarium graminearum mutant correlates to toxin-related gene expression. European Journal of Plant Pathology, 117, 1–12.

    Article  CAS  Google Scholar 

  • Wolf-Hall, C. E., & Bullerman, L. B. (1998). Characterization of Fusarium graminearum strains from corn and wheat by deoxynivalenol production and RAPD. Journal of Food Mycology, 1, 171–180.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wolf-Hall, C. The effect of different carbon sources on phenotypic expression by Fusarium graminearum strains. Eur J Plant Pathol 127, 137–148 (2010). https://doi.org/10.1007/s10658-010-9578-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9578-0

Keywords

Navigation