Skip to main content
Log in

Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To determine whether light quality affects the incidence of disease, we exposed cucumber (Cucumis sativus L. cv. Jinyan No. 4) plants at the 4-leaf stage to white and other monochromatic lights and tested the effects on plant response to Sphaerotheca fuliginea, defence-related gene expression and metabolic changes. Exposure to red light resulted in higher levels of H2O2 and salicylic acid (SA), and stronger expression of defence genes such as PR-1 than exposure to white or other monochromatic lights. In comparison, plants grown under purple and blue light had higher activities of phenylalanine ammonia-lyase (PAL) and polyphenoloxidase (PPO) and higher level of flavonoids than plants grown under other lights. Furthermore, plants grown under red light were more resistant whilst plants grown under other monochromatic lights were less resistant to Sphaerotheca fuliginea than plants grown under white light. These results suggest a role of red light in light-enhanced resistance, which correlates with enhanced SA-dependent signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAD :

cinnamyl alcohol dehydrogenase

CAT:

catalase

CS :

callose synthase

G-POD:

guaiacol peroxidase

HR:

hypersensitive response

LED:

light emitting diode

PAL:

phenylalanine ammonia-lyase

PPO:

polyphenoloxidase

PR proteins:

pathogenesis-related proteins

SA:

salicylic acid

SAG:

salicylic acid glucosidase

SAR:

systemic acquired resistance

SOD:

superoxide dismutase

References

  • Achuo, E. A., Audenaert, K., Meziane, H., & Hofte, M. (2004). The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathology, 53, 65–72.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, T., & Frenkel, C. (1977). Involvement of hydrogen peroxide in the regulation of senescence in Pear 1. Plant Physiology, 59, 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves 1. Plant Physiology, 98, 1222–1227.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. X., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired-resistance by salicylic-acid. Science, 262, 1883–1886.

    Article  CAS  PubMed  Google Scholar 

  • Genoud, T., Buchala, A. J., Chua, N. H., & Metraux, J. P. (2002). Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. The Plant Journal, 31, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Griebel, T., & Zeier, J. (2008). Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: Phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiology, 147, 790–801.

    Article  CAS  PubMed  Google Scholar 

  • Guo, A., Reimers, P. J., & Leach, J. E. (1993). Effect of light on incompatible interactions between Xanthomonas oryzae pv oryzae and rice. Physiological and Hysiological and Molecular Plant Pathology, 42, 413–413.

    Article  CAS  Google Scholar 

  • Gyula, P., Schaefer, E., & Nagy, F. (2003). Light perception and signaling in higher plants. Current Opinion in Plant Biology, 6, 446–452.

    Article  CAS  PubMed  Google Scholar 

  • Han, Y., Wang, Y., Bi, J. L., Yang, X. Q., Huang, Y., Zhao, X., et al. (2009). Constitutive and induced activities of defense related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. Journal of Chemical Ecology, 35, 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Inaba, T., & Kajiwara, T. (1971). Experiments on the sporulability of cucumber downy mildew fungus in lesion. Annals of the Phytopathological Society of Japan, 37, 220–224.

    Google Scholar 

  • Islam, S. Z., Honda, Y., & Arase, S. (1998). Light-induced resistance of broad bean against Botrytis cinerea. Journal of Phytopathology-Phytopathologische Zeitschrift, 146, 479–485.

    Article  Google Scholar 

  • Islam, S. Z., Babadoost, M., & Honda, Y. (2002). Effect of red light treatment of seedlings of pepper, pumpkin, and tomato on the occurrence of Phytophthora damping-off. Hortscience, 37, 678–681.

    Google Scholar 

  • Islam, S. Z., Babadoost, M., Bekal, S., & Lambert, K. (2008). Red light-induced systemic disease resistance against root-knot nematode Meloidogyne javanica and Pseudomonas syringae pv. tomato DC 3000. Journal of Phytopathology, 156, 708–714.

    Article  Google Scholar 

  • King, N. J. (2008). Inhibition of powdery mildew development and activation of antioxidant enzymes by induction of oxidative stress with foliar application of a mixture of riboflavin and methionine in cucumber. Scientia Horticulturae, 118, 181–188.

    Article  Google Scholar 

  • Kumar, D., & Klessig, D. F. (2008). The search for the salicylic acid receptor led to discovery of the SAR signal receptor. Plant Signaling and Behavior, 3, 691–692.

    PubMed  Google Scholar 

  • Lin, T. C., Ishizaka, M., & Ishii, H. (2009). Acibenzolar-S-methyl-induced systemic resistance against anthracnose and powdery mildew diseases on cucumber plants without accumulation of phytoalexins. Journal of Phytopathology, 157, 40–50.

    Article  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the \( {2^{ - \Delta \Delta {\rm{CT}}}} \) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Metraux, J. P. (2002). Recent breakthroughs in the study of salicylic acid biosynthesis. Trends in Plant Science, 7, 332–334.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nishimura, M. T., Stein, M., Hou, B. H., Vogel, J. P., Edwards, H., & Somerville, S. C. (2003). Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science, 301, 969–972.

    Article  CAS  PubMed  Google Scholar 

  • Patra, H. K., Kar, M., & Mishra, D. (1978). Catalase activity in leaves and cotyledons during plant development and senescence. Biochemie und Physiologie der Pflanzen, 172, 385–390.

    CAS  Google Scholar 

  • Rahman, M. Z., Honda, Y., & Arase, S. (2003). Red-light-induced resistance in broad bean (Vicia faba L.) to leaf spot disease caused by Alternaria tenuissima. Journal of Phytopathology-Phytopathologische Zeitschrift, 151, 86–91.

    Article  Google Scholar 

  • Raskin, I., Turner, I. M., & Melander, W. R. (1989). Regulation of heat production in the inflorescences of an Arum Lily by endogenous salicylic acid. Proceedings of the National Academy of Sciences, 86, 2214–2218.

    Article  CAS  Google Scholar 

  • Ruiz, J. M., Garcia, P. C., Rivero, R. M., & Romero, L. (1999). Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiologia Plantarum, 106, 151–157.

    Article  CAS  Google Scholar 

  • Shimazaki, K. I., Doi, M., Assmann, S. M., & Kinoshita, T. (2007). Light regulation of stomatal movement. Annual Review of Plant Biology, 58, 219–247.

    Article  CAS  PubMed  Google Scholar 

  • Tekel’ová, D., Repcák, M., Zemková, E., & Tót, J. (2000). Quantitative changes of dianthrones, hyperforin and flavonoids content in the flower ontogenesis of Hypericum perforatum. Planta Medica, 66, 778–780.

    Article  PubMed  Google Scholar 

  • Vogel, J., & Somerville, S. (2000). Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proceedings of the National Academy of Sciences of the United States of America, 97, 1897–1902.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Gu, M., Cui, J. X., Shi, K., Zhou, Y. H., & Yu, J. Q. (2009). Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 96, 30–37.

    Article  CAS  Google Scholar 

  • Xia, X. J., Wang, Y. J., Zhou, Y. H., Mao, W. H., Shi, K., Asami, T., et al. (2009). Reactive oxygen species plays a crucial role in brassinosteroids-induced stress tolerance in Cucumis sativus. Plant Physiology, 150, 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Ye, S. F., Zhou, Y. H., Sun, Y., Zou, L. Y., & Yu, J. Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56, 255–262.

    Article  CAS  Google Scholar 

  • Yu, J. Q., & Matsui, Y. (1997). Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. Journal of Chemical Ecology, 23, 817–827.

    Article  CAS  Google Scholar 

  • Zeier, J., Pink, B., Mueller, M. J., & Berger, S. (2004). Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta, 219, 673–683.

    Article  CAS  PubMed  Google Scholar 

  • Zucker, M. (1965). Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 40, 779–784.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2009CB119000) and National Key Technology R&D Program of China (2008BADA6B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Quan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Jiang, Y.P., Yu, H.J. et al. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. Eur J Plant Pathol 127, 125–135 (2010). https://doi.org/10.1007/s10658-009-9577-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9577-1

Keywords

Navigation