Skip to main content
Log in

Molecular and biological characterization of a severe isolate of Tomato chlorotic dwarf viroid containing a novel terminal right (TR) domain sequence

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Tomato chlorotic dwarf viroid (TCDVd) manually inoculated to transgenic (cv.‘Desiree’) potato plants containing antimicrobial cationic peptides failed to develop symptoms in above ground plant parts, but infected tubers were symptomatic. Plants from the infected tubers (second generation plants) emerged as either severely stunted (bushy stunt isolate, BSI) or tall and symptomless. Molecular characterization of BSI isolates showed TCDVd sequence variants 95 to 98% identical to TCDVd sequences from the database, while a viroid variant identical to TCDVd type isolate (acc # AF162131) was cloned from symptomless plants. The TCDVd BSI variants had novel U165C, GU177-178AA, and UCAC181-184CUUU nucleotide substitutions in the terminal right (TR) domain of the viroid molecule. The cloned viroid cDNAs of the BSI were infectious to experimental (cv. ‘Sheyenne’) tomato plants causing stunted plants with profuse auxiliary shoots. Visual evaluation of the susceptibility of the BSI to 18 potato and 21 tomato cultivars revealed severe symptoms in most cultivars of both species. The progeny variants accumulating in each potato and tomato cultivar exhibited the same novel TR domain in most cultivars, with only a slight variation in a few. The severity of the stunting symptoms induced by TCDVd from BSI isolates in both potato and tomato cultivars has not been noted previously with other TCDVd isolates and, as such, it is proposed that this new isolate be recognized as a distinct genotype. Emergence of this type of sequence variant in commercial fields or commercial tomato greenhouses could potentially cause relevant losses in both crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagnall, R. H. (1972). Resistance to potato viruses M, S, X, and the spindle tuber virus in tuber-bearing Solanum species. American Potato Journal, 49, 342–348.

    Article  Google Scholar 

  • Eigen, M. (1993). The origin of genetic information: viruses as models. Gene, 135, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Flores, R., Hernández, C., Martinez de Alba, A. E., Daròs, J.-A., & Di Serio, F. (2005). Viroids and viroid-host interactions. Annual Review of Phytopathology, 43, 117–139.

    Article  CAS  PubMed  Google Scholar 

  • Gora-Sochacka, A., Kierzek, A., Candresse, T., & Zagorski, W. (1997). The genetic stability of Potato spindle tuber viroid (PSTVd) molecular variants. RNA, 3, 68–74.

    CAS  PubMed  Google Scholar 

  • James, T., Mulholland, V., Jefferies, C., & Chard, J. (2008). First report of Tomato chlorotic dwarf viroid infecting commercial Petunia stocks in the United Kingdom. Plant Pathology, 57, 400.

    Article  Google Scholar 

  • Keese, P., & Symons, R. H. (1985). Domains in viroids: evidence of intermolecular RNA rearrangement and their contribution to viroid evolution. Proceedings of the National Academy of Sciences. USA, 82, 4582–4586.

    Google Scholar 

  • Keifer, M. C., Owens, R. A., & Diener, T. O. (1983). Structural similarities between viroids and transposable genetic elements. Proceedings of the National Academy of Sciences, USA, 80, 6234–6238.

  • Ling, K.-S., Verhoeven, J Th J, Singh, R. P., & Brown, J. K. (2009). First report of Tomato chlorotic dwarf viroid in greenhouse tomatoes in Arizona. Plant Disease, doi:10. 1094/PDIS-93-10-1075B.

    Google Scholar 

  • Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of Gerneral Plant Pathology, 74, 182–184.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2009). Host range and properties of Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 124, 349–352.

    Article  Google Scholar 

  • Misra, S., & Bhargava, A. (2008). Application of cationic antimicrobial peptides for management of plant diseases. In Z. K. Punja, S. H. De Boer., & H. Sanfaçon (Eds) Biotechnology and Plant Disease Management (pp. 301–320). CAB International.

  • Osusky, M., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2004). Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Research, 13, 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Owens, R. A., Thomson, S. M., & Kramer, M. (2003). Identification of neutral mutants surrounding two naturally occurring variants of Potato spindle tuber viroid. Journal of General Virology, 84, 751–756.

    Article  CAS  PubMed  Google Scholar 

  • Owens, R. A., Chen, W., Hu, Y., & Hsu, Y.-H. (1995). Suppression of Potato spindle tuber viroid replication and symptom expression by mutations which stabilize the pathogenicity domain. Virology, 208, 554–564.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P. (1966). Studies on Potato spindle tuber virus. Ph.D. Thesis, North Dakota State University, pp 1–89.

  • Singh, R. P. (1973). Experimental host-range of Potato spindle tuber virus. American Potato Journal, 50, 111–123.

    Article  Google Scholar 

  • Singh, R. P. (2006). Reassessment of the presence of viroid species of the genus Pospiviroid in infected floral parts, using reverse transcription- polymerase chain reaction and infectivity assays. Canadian Journal of Plant Pathology, 28, 242–249.

    Article  CAS  Google Scholar 

  • Singh, R. P. & Crowley, C. F. (1985). Evaluation of polyacrylamide gel electrophoresis, bioassay and dot-blot methods for the survey of Potato spindle tuber viroid. Canadian Plant Disease Survey, 65, 61–63.

    Google Scholar 

  • Singh, R. P. & Dilworth, A. D. (2008). Tomato chloritic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology, 123, 111–116. doi:10.1007/s10658-009-9440-4.

    Article  Google Scholar 

  • Singh, R. P., Dilworth, A. D., Baranwal, V. K., & Gupta, K. N. (2006a). Detection of Citrus exocortis viroid, Iresine Viroid, and Tomato chlorotic dwarf viroid in new ornamental host plants in India. Plant Disease, 90, 1457. doi:10.1094/PD-90-1457A.

    Article  Google Scholar 

  • Singh, R. P., Dilworth, A. D., Singh, M., & Babcock, K. M. (2006b). An alkaline solution simplifies nucleic acid preparation for RT-PCR and infectivity assays of viroids from crude sap and spotted membrane. Journal of Virological Methods, 132, 204–211. doi:10.1016/j-jvirmet2005.09.007.

    Article  CAS  Google Scholar 

  • Singh, R. P., Lakshman, D. K., Boucher, A., & Tavantzis, S. M. (1992). A viroid from Nematanthus wettsteinii plants closely related to Columnea latent viroid. Journal of General Virology, 73, 2769–2774.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid an evolutionaly link in the origin of Pospiviroids. Journal of General Virology, 80, 2823–2828.

    CAS  PubMed  Google Scholar 

  • Singh, R. P. & O’Brien, M. J. (1970). Additional indicator plants for Potato spindle tuber virus. American Potato journal, 47, 367–371.

    Article  Google Scholar 

  • Singh, R. P. & Slack, S. A. (1984). Reactions of tuber- bearing Solanum species to infection with Potato spindle tuber viroid. Plant Disease, 68, 784–787.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Werkman, A. W., & Roenhorst, J. W. (2007). First report of Tomato chlorotic dwarf viroid in Petunia hybrida from the United States of America. Plant Disease, 91, 324.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., Willenmen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infection of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Avinash Singh (AgraPoint, Inc., Truro, NS, Canada) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudra P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.P., Dilworth, A.D., Ao, X. et al. Molecular and biological characterization of a severe isolate of Tomato chlorotic dwarf viroid containing a novel terminal right (TR) domain sequence. Eur J Plant Pathol 127, 63–72 (2010). https://doi.org/10.1007/s10658-009-9571-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9571-7

Keywords

Navigation