Skip to main content
Log in

Host range and properties of Tomato chlorotic dwarf viroid

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We characterised the host range and physical properties of Tomato chlorotic dwarf viroid. Among the 46 plant species inoculated with the viroid, two in the family Compositae and 23 in the family Solanaceae were found to be systemic hosts. The viroids in the crude sap from diseased tomato plants were thermally inactivated by heating to 100°C for at least 40 min. These viroids also lost their infectivity when diluted in phosphate buffer to at least 10−6, or after 3 days of incubation at room temperature. However, the infectivity of the viroids in dried crude sap from the plants persisted throughout the 50-day test period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barbosa, C. J., Pina, J. A., Perez-Panades, J., Brenad, L., Serra, P., Navarro, L., et al. (2005). Mechanical transmission of citrus viroids. Plant Disease, 89, 749–754. doi:10.1094/PD-89-0749.

    Article  Google Scholar 

  • Diener, O. T., & Raymer, B. W. (1969). Potato spindle tuber virus: a plant virus with properties of a free nucleic acid II. Characterization and partial purification. Virology, 37, 351–366. doi:10.1016/0042-6822(69)90219-0.

    Article  PubMed  CAS  Google Scholar 

  • Diener, O. T., Smith, D. R., & O’Brien, M. J. (1972). Potato spindle tuber viroid. VII. Susceptibility of several solanaceous plant species to infection with low molecular-weight RNA. Virology, 48, 844–846. doi:10.1016/0042-6822(72)90166-3.

    Article  PubMed  CAS  Google Scholar 

  • James, T., Mulholland, V., Jeffries, C., & Chard, J. (2008). First report of Tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathology, 57, 400. doi:10.1111/j.1365-3059.2007.01727.x.

    Article  Google Scholar 

  • Manzer, F. E., & Merriam, D. (1961). Field transmission of the Potato spindle tuber virus and virus X by cultivating and hilling equipment. American Potato Journal, 38, 346–352. doi:10.1007/BF02862243.

    Article  Google Scholar 

  • Matsushita, Y., Tsukiboshi, T., Ito, Y., & Chikuo, Y. (2007). Nucleotide sequences and distribution of Chrysanthemum stunt viroid in Japan. Journal of the Japanese Society for Horticultural Science, 76, 333–337. doi:10.2503/jjshs.76.333.

    Article  CAS  Google Scholar 

  • Matsushita, Y., Kanda, A., Usugi, T., & Tsuda, S. (2008). First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. Journal of General Plant Pathology, 74, 182–184. doi:10.1007/s10327-008-0076-6.

    Article  CAS  Google Scholar 

  • Singh, R. P., & Bagnall, R. H. (1968). Solanum rostratum Dunal., a new test plant for the Potato spindle tuber virus. American Potato Journal, 45, 335–336. doi:10.1007/BF02849770.

    Article  Google Scholar 

  • Singh, R. P., & Dilworth, A. D. (2008). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. European Journal of Plant Pathology. doi:10.1007/s10658-008-9344-8.

  • Singh, R. P., Nie, X., & Singh, M. (1999). Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids. The Journal of General Virology, 80, 2823–2828.

    PubMed  CAS  Google Scholar 

  • Singh, R. P., Ready, K. F. M., & Nie, X. (2003). Biology. In A. Hadidi, R. Flores, J. W. Randles, & J. S. Semancik (Eds.), Viroids (pp. 30–48). Melbourne, Australia: CSIRO.

    Google Scholar 

  • Singh, R. P., Dilworth, A. D., Baranwal, V. K., & Gupta, K. N. (2006). Detection of Citrus exocortis viroid, Iresine viroid, and Tomato chlorotic dwarf viroid in new ornamental host plants in India. Plant Disease, 90, 1457. doi:10.1094/PD-90-1457A.

    Article  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110, 823–831. doi:10.1007/s10658-004-2493-5.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Willemen, T. M. (2007). First report of Tomato chlorotic dwarf viroid in Petunia hybrida from the United States of America. Plant Disease, 91, 324–324. doi:10.1094/PDIS-91-3-0324B.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Matsuura, the Hiroshima Prefectural Agriculture Research Centre, for helpful comments and discussion. This study was supported, in part, by a Grant-in-Aid from The Research Project for Utilizing Advanced Technologies in Agriculture, Forestry and Fisheries, administered by the Ministry of Agriculture, Forestry and Fisheries in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Tsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushita, Y., Usugi, T. & Tsuda, S. Host range and properties of Tomato chlorotic dwarf viroid . Eur J Plant Pathol 124, 349–352 (2009). https://doi.org/10.1007/s10658-008-9416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9416-9

Keywords

Navigation