Skip to main content
Log in

Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Biological control of Rhizoctonia solani with Trichoderma harzianum has been demonstrated in several studies. However, none have reported the dynamics of expression of defence response genes. Here we investigated the expression of these genes in potato roots challenged by R. solani in the presence/absence of T. harzianum Rifai MUCL 29707. Analysis of gene expression revealed an induction of PR1 at 168 h post-inoculation (hpi) and PAL at 96 hpi in the plants inoculated with T. harzianum Rifai MUCL 29707, an induction of PR1, PR2 and PAL at 48 hpi in the plants inoculated with R. solani and an induction of Lox at 24 hpi and PR1, PR2, PAL and GST1 at 72 hpi in the plants inoculated with both organisms. These results suggest that in the presence of T. harzianum Rifai MUCL 29707, the expression of Lox and GST1 genes are primed in potato plantlets infected with R. solani at an early stage of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BCA:

biological control agent

β-tub:

beta-tubulin

EF1-α:

elongation factor 1-alpha

GAPDH:

glyceraldehyde phosphate dehydrogenase

GST1:

Gluthatione-S-transferase 1

Lox:

Lipoxygenase

PAL:

Phenylalanine ammonia lyase

PR1:

Pathogenesis Related 1

PR2:

Pathogenesis Related 2

R-treatment:

Rhizoctonia solani treatment

T-treatment:

Trichoderma harzianum treatment

T+R-treatment:

Trichoderma harzianum and Rhizoctonia solani treatment

Ubc:

ubiquitin conjugating enzyme-like

References

  • Alfano, G., Lewis Ivey, M. L., Cakir, C., Bos, J. I. B., Miller, S. A., Madden, L. V., et al. (2007). Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382. Phytopathology, 97, 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Banville, G. J., Carling, D. E., & Otrysko, B. E. (1996). Rhizoctonia disease on potato. In B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 321–330). Dordrecht: Kluwer.

    Google Scholar 

  • Brewer, M. T., & Larkin, R. P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24, 939–950.

    Article  Google Scholar 

  • Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39.

    Article  PubMed  CAS  Google Scholar 

  • Chet, I., & Inbar, J. (1994). Biological control of fungal pathogens. Applied Biochemistry and Biotechnology, 48, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Dana, M. M., Limón, M. C., Mejías, R., Mach, R. L., Benítez, T., Pintor-Toro, J. A., et al. (2001). Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Current Genetics, 38, 335–342.

    Article  Google Scholar 

  • Darzynkiewicz, Z. (1990). Simultaneous analysis of cellular RNA and DNA content (vol. 41, pp. 401–420). San Diego: Academic Press.

    Google Scholar 

  • Declerck, S., Strullu, D. G., & Plenchette, C. (1998). Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia, 90, 579–585.

    Article  Google Scholar 

  • De Vos, M., Van Oosten, V. R., Van Poecke, R. M. P., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., et al. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 18, 923–937.

    Article  PubMed  Google Scholar 

  • Elad, Y., Freeman, S., & Monte, E. (2000). Biocontrol agents: Mode of action and interaction with other means of control. IOBC wprs Bulletin, vol 24. Sevilla, España.

  • Gao, L. L., Smith, F. A., & Smith, S. E. (2006). The rmc locus does not affect plant interactions or defence-related gene expression when tomato (Solanum lycopersicum) is infected with the root fungal parasite, Rhizoctonia. Functional Plant Biology, 33, 289–296.

    Article  CAS  Google Scholar 

  • Grosch, R., Scherwinski, K., Lottmann, J., & Berg, G. (2006). Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research, 110, 1464–1474.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, K., & Strittmatter, G. (1994). Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. European Journal of Biochemistry, 226, 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, L. E., & Howell, C. R. (2004). Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology, 94, 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Harman, G. E., & Bjorkman, T. (1998). Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 229–265). London UK: Taylor & Francis.

    Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Review Microbiology, 2, 43–56.

    Article  CAS  Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4–10.

    Article  Google Scholar 

  • Kato, M., Hayakawa, Y., Hyodo, Y., & Yano, M. (2000). Wound-induced ethylene synthesis and expression and formation of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, phenylalanine ammonia-lyase and peroxidase in wounded mesocarp tissue of Cucurbita maxima. Japanese Society of Plant Physiologists’, 41, 440–447.

    CAS  Google Scholar 

  • Marra, R., Ambrosino, P., Carbone, V., Vinale, F., Woo, S. L., Ruocco, M., et al. (2006). Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 50, 307–321.

    Article  PubMed  CAS  Google Scholar 

  • McMaugh, S. J., & Lyon, B. R. (2003). Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques, 34, 982–986.

    PubMed  CAS  Google Scholar 

  • Narusaka, Y., Narusaka, M., Horio, T., & Ishii, H. (1999). Comparison of local and systemic induction of acquired disease resistance in cucumber plants treated with benzothiadiazoles or salicylic acid. Japanese Society of Plant Physiologists, 40, 388–395.

    CAS  Google Scholar 

  • Newman, M. A., Von Roepenack-Lahaye, E., Parr, A., Daniels, M. J., & Dow, J. M. (2002). Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant Journal, 29, 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, N., Hausman, J. F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56, 2907–2914.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 2002–2007.

    Article  Google Scholar 

  • Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509–515.

    Article  PubMed  CAS  Google Scholar 

  • Salzer, P., Bonanomi, A., Beyer, K., Vogeli-Lange, R., Aeschbacher, R. A., Lange, J., et al. (2000). Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-Microbe Interactions, 13, 763–777.

    Article  PubMed  CAS  Google Scholar 

  • Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E., & Trillas, I. (2007). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics, 7, 3943–3952.

    Article  PubMed  CAS  Google Scholar 

  • Shoresh, M., Yedidia, I., & Chet, I. (2005). Involvement of the jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology, 95, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., & Métraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.

    Article  PubMed  CAS  Google Scholar 

  • Van Aarle, I. M., Viennois, G., Amenc, L. K., Tatry, M. V., Luu, D. T., & Plassard, C. (2007). Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. Mycorrhiza, 17, 487–494.

    Article  PubMed  Google Scholar 

  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.

    Article  Google Scholar 

  • Van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., Van Loon, L. C., & Pieterse, C. M. J. (1999). Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Molecular Biology, 41, 537–549.

    Article  PubMed  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7).

  • Vinale, F., Marra, R., Scala, F., Ghisalberti, E. L., Lorito, L., & Sivasithamparam, K. (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.

    Article  CAS  Google Scholar 

  • Voets, L., Dupré de Boulois, H., Renard, L., Strullu, D. G., & Declerck, S. (2005). Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiology Letters, 248, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., & Valkonen, J. P. T. (2008). Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathology, 57, 152–161.

    Google Scholar 

  • Yan, H. Z., & Liou, R. F. (2006). Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology, 43, 430–438.

    Article  PubMed  CAS  Google Scholar 

  • Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant Induction of Systemic Resistance to Pseudomonas syringae pv. lachrymans in Cucumber by Trichoderma asperellum (T-203) and Accumulation of Phytoalexins. Applied and Environmental Microbiology, 69, 7343–735.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Direction Générale de l’Agriculture of the Walloon Region under contract number D31-1149, entitled « valorisation de la microflore bénéfique des sols pour le contrôle de la flore pathogène des productions de pomme de terre comme alternative à l’utilisation des pesticides». S.C. gratefully acknowledges the financial support from the Belgian Federal Science Policy Office (contract BCCM C3/10/003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Declerck.

Additional information

Mycothèque de l’Université catholique de Louvain of S. Cranenbrouck's affiliation is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallou, A., Cranenbrouck, S. & Declerck, S. Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani . Eur J Plant Pathol 124, 219–230 (2009). https://doi.org/10.1007/s10658-008-9407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9407-x

Keywords