Skip to main content
Log in

Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Monoclonal and polyclonal antibodies that bind to eggs and/or second-stage juveniles of the nematode Meloidogyne javanica were tested for their effects on the parasitic interactions between this nematode and the fungus Trichoderma. Parasitism of Trichoderma asperellum-203 and Trichoderma atroviride on nematode egg masses, eggs and juveniles was enhanced when antibodies were incorporated into in vitro parasitism bioassays. Parasitism on separated eggs (without gelatinous matrix) and their hatched juveniles was also improved, compared to controls without antibodies that did not attach fungal conidia. Improved parasitism could be due to bilateral binding of the antibodies to the nematodes and conidia, enabling better conidial attachment to the nematodes. Enhanced germination of antibody-bound conidia further improved parasitism. Differences were observed among antibodies in their effects on fungal parasitism and their interaction with Trichoderma species. We focused mainly on the egg- and juvenile-binding monoclonal antibody MISC that exhibited a stronger reaction with T. asperellum-203 than with T. atroviride. Pretreatment of this antibody with fucose inhibited its binding to nematodes and conidial attachment to nematodes, as well as conidial agglutination in the presence of the antibody. Antibody binding to juveniles affected their movement and viability, especially gelatinous matrix-originated juveniles. The fucose-specific lectin Ulex europaeus-I enhanced conidial attachment to nematode life-stages, and conidial agglutination occurred in its presence. These phenomena were inhibited by preincubating lectin with fucose. Our results suggest that carbohydrate residues, such as fucose, on the surface of the nematode and fungal conidia are involved in the antibody- and lectin-mediated improved parasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

gm:

gelatinous matrix

J2:

second-stage juvenile

MAb:

monoclonal antibody

PAb:

polyclonal antibody

References

  • Blaxter, M. L. & Robertson, W. M. (1998). The cuticle. In R. N. Perry & D. J Wright (Eds.), Free-living and plant parasitic nematodes (pp. 25–48). CAB International.

  • Davies, K. (2005). Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Advances in Applied Microbiology, 37, 53–78. doi:10.1016/S0065-2164(05)57002-3.

    Article  CAS  Google Scholar 

  • Elad, Y., Barak, R., & Chet, I. (1983). Possible role of lectins in mycoparasitism. Journal of Bacteriology, 154, 1431–1435.

    PubMed  CAS  Google Scholar 

  • Gravato-Nobre, M. J., & Evans, K. (1998). Plant and nematode surfaces: Their structure and importance in host–parasite interactions. Nematologica, 44, 103–124.

    Article  Google Scholar 

  • Gravato-Nobre, M. J., McClure, M. A., Dolan, L., Calder, G., Davies, K. G., Mulligan, B., et al. (1999). Meloidogyne incognita surface antigen epitopes in infected Arabidopsis roots. Journal of Nematology, 31, 212–223.

    CAS  PubMed  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma spp.—opportunistic avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. doi:10.1038/nrmicro797.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G. G., McClure, M. A., & Schmitt, M. E. (2000). Origin of a Meloidogyne incognita surface coat antigen. Journal of Nematology, 32, 174–182.

    CAS  PubMed  Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and exploitation of microbial agents for the biological control of plant–parasitic nematodes. Annual Review of Phytopathology, 38, 423–441. doi:10.1146/annurev.phyto.38.1.423.

    Article  PubMed  CAS  Google Scholar 

  • Kerry, B. R., & Hominick, W. M. (2001). Biological control. In D. L. Lee (Ed.), Biology of Nematodes (pp. 483–509). London: Taylor and Francis.

    Google Scholar 

  • Lin, H., & McClure, M. A. (1996). Surface coat of Meloidogyne incognita. Journal of Nematology, 28, 216–224.

    CAS  PubMed  Google Scholar 

  • Lopez de Mendoza, M. E., Curtis, R., & Gowen, S. (1999). Identification and characterization of excreted-secreted products and surface coat antigens of animal– and plant–parasitic nematodes. Parasitology, 118, 397–405. doi:10.1017/S0031182098003941.

    Article  PubMed  Google Scholar 

  • Manzanilla-Lopez, R. H., Kenneth, E., & Bridge, J. (2004). Plant diseases caused by nematodes. In Z. X. Chen, S. Y. Chen, & D. W. Dickson (Eds.), Nematology—Advances and perspectives, Volume II: Nematode management and utilization (pp. 637–716). Cambridge, MA: CABI Publishing.

    Google Scholar 

  • Morton, C. O., Hirsch, P. R., & Kerry, B. (2004). Infection of plant–parasitic nematodes by nematophagous fungi—a review of application of molecular biology to understand infection processes and to improve biological control. Nematology, 6, 161–170. doi:10.1163/1568541041218004.

    Article  CAS  Google Scholar 

  • Puyesky, M., Benhamou, N., Ponce Noyola, P., Bauw, G., Ziv, T., Van Montagu, M., et al. (1999). Developmental regulation of cmp1, a gene encoding a multidomain conidiospore surface protein of Trichoderma. Fungal Genetics and Biology, 27, 88–99. doi:10.1006/fgbi.1999.1134.

    Article  PubMed  CAS  Google Scholar 

  • Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biocontrol of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91, 687–693. doi:10.1094/PHYTO.2001.91.7.687.

    Article  PubMed  CAS  Google Scholar 

  • Sharon, E., Chet, I., Viterbo, A., Bar-Eyal, M., Nagan, H., Samuels, G. J., et al. (2007). Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. European Journal of Plant Pathology, 118, 247–258. doi:10.1007/s10658-007-9140-x.

    Article  Google Scholar 

  • Sharon, E., Spiegel, Y., Solomon, R., & Curtis, R. (2002). Characterization of Meloidogyne javanica surface coat using antibodies and their effect on nematode behaviour. Parasitology, 125, 177–185. doi:10.1017/S0031182002001907.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, Y., Inbar, J., Kahane, I., & Sharon, E. (1995). Carbohydrate-recognition domains on the surface of phytophagous nematodes. Experimental Parasitology, 80, 220–227. doi:10.1006/expr.1995.1027.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, Y., Kahane, I., Cohen, L., & Sharon, E. (1997). Meloidogyne javanica surface proteins: characterization and lability. Parasitology, 115, 513–519. doi:10.1017/S0031182097001637.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel, Y., & McClure, M. A. (1995). The surface coat of plant–parasitic nematodes: Chemical composition, origin and biological role. A review. Journal of Nematology, 27, 127–134.

    CAS  PubMed  Google Scholar 

  • Spiegel, Y., Mor, M., & Sharon, E. (1996). Attachment of Pasteuria penetrans endospores to the surface of Meloidogyne javanica second-stage juveniles. Journal of Nematology, 28, 328–334.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Rosane Curtis, Department of Plant Pathogen Interactions, Rothamsted Research Limited, Harpenden, UK, and Prof. Michael A. McClure, Division of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Tucson, AZ, for kindly providing antibodies used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Sharon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharon, E., Chet, I. & Spiegel, Y. Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur J Plant Pathol 123, 291–299 (2009). https://doi.org/10.1007/s10658-008-9366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9366-2

Keywords

Navigation