Skip to main content
Log in

Activity of carboxylic acid amide (CAA) fungicides against Bremia lactucae

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Four carboxylic acid amide (CAA) fungicides, mandipropamid (MPD), dimethomorph (DMM), benthiavalicarb (BENT) and iprovalicarb (IPRO) were examined for their effects on various developmental stages of Bremia lactucae, the causal agent of downy mildew in lettuce, in vitro and in planta. Spore germination in vitro or on leaf surfaces was inhibited by all CAA fungicides (technical or formulated). MPD was more effective in suppressing germination than DMM or BENT, whereas IPRO was least effective. CAA induced no disruption of F-actin microfilament organisation in germinating spores of B. lactucae. CAA applied to germinating spores in vitro prevented further extension of the germ tubes. When applied to germinated spores on the leaf surface they prevented penetration. Preventive application of CAA to intact plants inhibited infection. MPD was more effective in suppressing infection than DMM or BENT, whereas IPRO was least effective. Curative application was effective at ≤3 h post-inoculation (hpi) but not at ≥18 hpi. CAA (except IPRO) applied to upper leaf surfaces inhibited spore germination on the lower surface and hence reduced infection. CAA suppressed sporulation of B. lactucae on floating leaf discs and when sprayed onto infected plants two days before onset of sporulation. BENT and DMM were more effective in suppressing sporulation than MPD or IPRO. Epidemics of downy mildew in shade-house grown lettuce were suppressed by CAA. A single spray applied to five-leaf plants before transplanting controlled the disease for 50 days. The results suggest that CAA are effective inhibitors of spore germination and therefore should be used as preventive agents against downy mildew of lettuce caused by B. lactucae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albert, G., Curtze, J., & Drandarevski, C. (1988). Dimethomorph (CME 151), a novel curative fungus fungicide. Brighton Crop Protection Conference—Pests and Diseases, pp. 17–22.

  • Albert, G., Thomas, A., & Guehne, M. (1991). Fungicidal activity of dimethomorph on different stages in the life cycle of Phytophthora infestans and Plasmopara viticola. In Third International Conference on Plant Diseases, Bordeaux pp. 887–894. Paris, France: ANPP.

  • Anon. (2006). http://www.frac.info/work/work_CAA.htm.

  • Bagirova, S. F., Li, A. Z., Dolgova, A. V., Elansky, S. N., Shaw, D. S., & Dyakov, Y. T. (2001). Mutants of Phytophthora infestans resistant to dimethomorph fungicide. Journal of Russian Phytopathology, 2, 19–24.

    Google Scholar 

  • Cohen, Y., Baider, A., & Cohen, B. H. (1995). Dimethomorph activity against oomycete fungal plant pathogens. Phytopathology, 85, 1500–1506.

    Article  CAS  Google Scholar 

  • Cohen, Y., Eyal, H., & Hanania, J. (1990). Ultrastructure, autofluorescence, callose deposition and lignification in susceptible and resistant muskmelon leaves infected with the powdery mildew fungus Sphaerotheca fuliginea. Physiological and Molecular Plant Pathology, 36, 191–204.

    Article  CAS  Google Scholar 

  • Cohen, Y., Eyal, H., Hanania, J., & Malik, Z. (1989). Ultrastructure of Pseudoperonospora cubensis in muskmelon genotype susceptible and resistant to downy mildew. Physiological and Molecular Plant Pathology, 34, 27–40.

    Article  Google Scholar 

  • Cohen, Y., & Gisi, U. (1996). Systemic translocation of 14C-DL-3-amino-n-butanoic acids. Physiological and Molecular Plant Pathology, 45, 441–456.

    Article  Google Scholar 

  • Cohen, Y., & Gisi, U. (2007). Differential activity of carboxylic acid amides fungicides against various developmental stages of Phytophthora infestans. Phytopathology, 97, 1274–1283.

    Article  CAS  Google Scholar 

  • Dereviagina, M. K., Elanskij, S. N., & Diakov, Y. T. (1999). Resistance of Phytophthora infestans to the dimethomorph fungicide. Mikologiya I Fitopatologiya, 33, 208–213.

    Google Scholar 

  • Gisi, U., Waldner, M., Kraus, N., Dubuis, P. H., & Sierotzki, H. (2006). Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathology, 56, 199–208.

    Article  Google Scholar 

  • Griffiths, R. G., Dancer, J., O’Neill, E., & Harwood, J. L. (2003). A mandelamide pesticide alters lipid metabolism in Phytophthora infestans. New Phytologist, 158, 345–353.

    Article  CAS  Google Scholar 

  • Harp, T., Cloud, G., Minton, B., & Cochran, A. (2006). Mandipropamid: A new fungicide for control of late blight and downy mildews. Phytopathology, 96, S185.

    Google Scholar 

  • Harp, T., Cochran, A., Tory, D., Kuhn, P., Payan, L., Laird, D., et al. (2007). Development of Revus 2.09SC (a.i. mandipropamid) in the U.S. for control of downy mildew on leafy vegetables. Phytopathology, 97, S45.

    Google Scholar 

  • Hermann, D., Bartlett, D. W., Fischer, W., & Kempf, H. J. (2005). The behaviour of mandipropamid on and in plants. Proceedings of the BCPC International Congress of Crop Science & Technology, Glasgow, UK, 1, 87–92.

    Google Scholar 

  • Huggenberger, F., & Kuhn, P. J. (2006). Biological and physico-chemical properties of mandipropamid, a new fungicide for the control of oomycete pathogens. Phytopathology, 96, S51.

    Google Scholar 

  • Huggenberger, F., Lamberth, C., & Iwanzik, W. (2005). Mandipropamid a new fungicide against Oomycete pathogens. Proceedings of the BCPC International Congress Crop Science & Technology, Glasgow, UK, 1, 93–98.

    Google Scholar 

  • Jende, G., Steiner, U., & Dehne, H. -W. (1999). Effects of iprovalicarb (SZX 0722) on the development of Phytophthora infestans in tomato plants. Pflanzenchutz-Nachrichten Bayer, 52, 49–60.

    CAS  Google Scholar 

  • Jende, G., Steiner, U., & Dehne, H.-W. (2001). Microscopical characterization of fungicidal effects on infection structures and cell wall formation of Phytophthora infestans. In H. W. Dehne, U. Gisi, K. H. Kuck, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and antifungal compounds (pp. 83–90). Bonn: AgroConcept.

    Google Scholar 

  • Lamberth, C., Cederbaum, F., Jeanguenat, A., Kempf, H. J., Zeller, M., & Zeun, R. (2006). Synthesis and fungicidal activity of N-2-(3-methoxy-4-propagyloxy) phenylethyl amides. Part II: Anti-oomycetic mandelamides. Pest Management Science, 62, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Matheron, M. E., & Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84, 454–458.

    Article  CAS  Google Scholar 

  • Miyake, Y., Sakai, J., Miura, I., Nagayama, K., & Shibata, M. (2003). Effects of a novel fungicide benthiavalicarb-isopropyl against oomycete fungal diseases. The BCPC International Congress of Crop Science and Technology, Glasgow, Scotland, UK, Nov. 2003.

  • Reuveni, M. (2003). Activity of the new fungicide benthiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. European Journal of Plant Pathology, 109, 243–251.

    Article  CAS  Google Scholar 

  • Sharaf, K., Lewinsohn, D., Nevo, E., & Beharav, A. (2007). Virulence patterns of Bremia lactucae in Israel. Phytoparasitica, 35, 100–108.

    Google Scholar 

  • Stenzel, K., Pontzen, R., Seitz, T., Tiemann, R., & Witzenberger, A. (1998). SZX 722: A novel systemic oomycete fungicide. Brighton Crop Protection Conference, pp. 367–374.

  • Young, D. H., Kemmit, G. M., & Owen, J. (2005). A comparative study of XR-539 and other oomycete fungicides: Similarity to dimethomorph and amino acid amides in its mechanism of action. In H. W. Dehne, U. Gisi, K. H. Kuch, P. E. Russell, & H. Lyr (Eds.), Modern fungicides and antifungal compounds IV (pp. 145–152). Alton: BCPC.

    Google Scholar 

  • Zhu, S. S., Liu, X. L., Liu, P. F., Li, Y., Li, J. Q., Wang, H. M., et al. (2007). Flumorph is a novel fungicide that disrupts microfilament organization in Phytophthora melonis. Phytopathology, 97, 643–649.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. Alex Perelman of Bar-Ilan University for his assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigal Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, Y., Rubin, A.(. & Gotlieb, D. Activity of carboxylic acid amide (CAA) fungicides against Bremia lactucae . Eur J Plant Pathol 122, 169–183 (2008). https://doi.org/10.1007/s10658-008-9327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9327-9

Keywords

Navigation