Skip to main content
Log in

Evaluation of nematicidal properties of saponins from Medicago spp.

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript


The nematicidal activity of saponins from Medicago arborea (tops), M. arabica (tops and roots) and M. sativa (tops and roots) against the plant-parasitic nematode Xiphinema index was investigated. Nematicidal activity of related prosapogenins and sapogenins on X. index is also described. Saponins from Medicago spp. at different concentrations were all nematicidal, those from M. arborea tops being the less effective. In general, saponins induced 100% mortality at 500 μg ml−1 between 8 and 48 h, while prosapogenins resulted in toxicity starting at 125 μg ml−1. Differences in the effects on X. index induced by prosapogenins and sapogenins were less pronounced, although prosapogenins displayed a larger range of activity. Assays with purified sapogenins demonstrated the relationship of the observed nematicidal activity of M. sativa and M. arborea to the content of the main aglycones (medicagenic acid and hederagenin, respectively) in the saponin extracts. Hederagenin displayed the highest bioactivity, giving 38% mortality after 1 h at 125 μg ml−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  • Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z. et al. (2005). Antimicrobial activity of saponins from Medicago sp.: Structure–activity relationship. Phytotherapy Research, 20, 454–457.

    Article  CAS  Google Scholar 

  • Bialy, Z., Jurzysta, M., Mella, M., & Tava, A. (2004). Triterpene saponins from aerial parts of Medicago arabica L. Journal of Agricultural and Food Chemistry, 52, 1095–1099.

    Article  PubMed  CAS  Google Scholar 

  • Bialy, Z., Jurzysta, M., Mella, M., & Tava, A. (2006). Triterpene saponins from the roots of Medicago hybrida (Pourret) Trautv. Journal of Agriculture and Food Chemistry, 54, 2520–2526.

    Article  CAS  Google Scholar 

  • Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Reviews of Phytopathology, 40, 221–249.

    Article  CAS  Google Scholar 

  • D’Addabbo, T., Curto, G., Greco, P., Di Silvestro, D., Coiro, M.I., Lamberti, F., et al. (2005). Prove preliminari di Lotta contro nematodi galligeni mediante estratti di Quillaja saponaria Molina. Nematologia Mediterranea 33, 29–34.

    Google Scholar 

  • Finney, D. J. (1978). Statistical methods in biological assay. London, UK: C. Griffith.

    Google Scholar 

  • Francis, G., Keem, Z., Makkar, H. P. S., & Becker, K. (2002). The biological action of saponins in animal systems. A review. British Journal of Nutrition, 88, 587–605.

    Article  CAS  Google Scholar 

  • Heng, L., Koningsveld van, G. A., Gruppen, H., Boekel van, M. A. J. S., Vincken, J-P., Roozen, J. P. et al. (2004). Protein–flavour interactions in relation to development of novel protein foods. Trends in Food Science & Technology, 15, 217–224.

    Article  CAS  Google Scholar 

  • Houghton, P., Patel, N., Jurzysta, M., Bialy, Z., & Cheng, C. (2006). Antidermatophyte activity of medicago extracts and contained saponins and their structure–activity relationships. Phytotherapy Research, 20, 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  • Ikedo, S., Shimoyada, M., & Watanabe, K. (1996). Interaction between bovine serum albumin and saponin as studied by heat stability and protease digestion. Journal of Agricultural and Food Chemistry, 44, 792–795.

    Article  CAS  Google Scholar 

  • Julier, B., Guy, P., Castillo-Acuna, C., Caubel, G., Ecalle, C., Esquibet, M. et al. (1996). Genetic variation for disease and nematode resistances and forage quality in perennial diploid and tetraploid lucerne populations (Medicago sativa L.). Euphytica, 91, 241–250.

    Google Scholar 

  • Jurzysta, M. (1982). M. Polsky Urzad Patentowy. Patent No. 114171.

  • Jurzysta, M., Price, K., Ridout, C., & Fenwick, R. (1989). The structure of four triterpenoid saponins isolated from the seed of Trifolium incarnatum. Acta Societatis Botanicorum Poloniae, 58, 51–58.

    Google Scholar 

  • McSorley, R. (1987). Extraction of nematodes and sampling methods. In R. H. Brown & B. R. Kerry (Eds.), Principles and practises of nematode control in crops (pp. 13–47). Marrickville, NSW, Australia: AP Press.

    Google Scholar 

  • Meher, H. C., Walia, S., & Sethi, C. L. (1988). Effect of steroidal saponins on the mobility of juveniles of Meloidogyne incognita. Indian Journal of Nematology, 18, 244–247.

    Google Scholar 

  • Morein, B., Hu, K.-F., & Abusugra, I. (2004) Current status and potential application of ISCOMs in veterinary medicine. Advanced Drug Delivery Reviews, 56, 1367–1382.

    Article  PubMed  CAS  Google Scholar 

  • Oleszek, W., Jurzysta, M., Ploszynski, M., Colquhoun, I. J., Price, K. R., Fenwich, G. R. (1992). Zanhic acid tridesmoside and other dominant saponins from Alfalfa (Medicago sativa L.) aerial parts. Journal of Agriculture and Food Chemistry, 40, 191–196.

    Article  CAS  Google Scholar 

  • Omar, S. A., Abdel-Massih, M. I., & Mohamed, B. E., (1994). Use of saponin to control the root-knot nematode Meloidogyne javanica in tomato plants. Bulletin of Faculty of Agriculture of Cairo, 45, 933–940.

    Google Scholar 

  • Page, A. P., & Winter, A. D. (2003). Enzymes involved in the biogenesis of the nematode cuticle. Advances in Parasitology, 53, 85–148.

    Article  PubMed  Google Scholar 

  • Pedersen, M. W., Barnes, D. K., Sorensen, E. L., Griffin, D. G., Nielson, M. W., Hill, R. R., Jr. et al. (1976). Effects of low and high saponin selection in alfalfa on agronomic and pest resistance traits and the interrelationship of these traits. Crop Science, 16, 193–199.

    Article  Google Scholar 

  • Pelah, D., Abramovich, Z., Markus, A., & Wiesman, Z. (2002). The use of commercial saponin from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens. Journal of Ethnopharmacology, 81, 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S. M., Jimenez-Flores, R., Pollack, J., Lone, T. A., & Berber-Jimenez, M. D. (1993). Protein– saponin interaction and its influence on blood lipids. Journal of Agricultural and Food Chemistry, 41,1287–1291.

    Article  CAS  Google Scholar 

  • Raski, D. J. (1996). Dagger and needle nematodes. In R. C. Pearson & A. C. Goheen (Eds.), Compendium of grape diseases (pp. 56–59). St. Paul, MN: APS Press.

    Google Scholar 

  • Rönnberg, B., Fekadu, M., & Morein, B. (1995). Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine, 13, 1375–1382.

    Article  PubMed  Google Scholar 

  • San Martin, R. (2004). Use of Quillaja saponins to control nematodes. Development of a commercial product: QL AGRI (p. 6). Pulawy, Poland: Abstract Book – International Conference on Saponins.

    Google Scholar 

  • San Martin, R., & Magnunacelaya, J. C. (2005). Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology, 7, 577–585.

    Article  CAS  Google Scholar 

  • Tanaka, O., Tamura, Y., Masuda, H., & Mizutani, K. (1996). Application of saponins in foods and cosmetics: Saponins of Mohave yucca and Sapindus mukurossi. In G. R. Waller & K. Yamasaki (Eds.), Advances in experimental medicine and biology. Saponins used in traditional and modern medicine (pp. 565–574). New York: Plenum.

    Google Scholar 

  • Tava, A., & Avato, P. (2006). Chemistry and biological activity of triterpene saponins from Medicago species. Natural Product Communications, 1, 1159–1180.

    CAS  Google Scholar 

  • Tava, A., Mella, M., Avato, P., Argentieri, M. P., Bialy, Z., & Jurzysta, M. (2005). Triterpenoid glycosides from leaves of Medicago arborea L. Journal of Agricultural and Food Chemistry, 53, 9954–9965.

    Article  PubMed  CAS  Google Scholar 

  • Tava, A., Oleszek., W., Jurzysta, M., Berardo, N., & Odoardi, M. (1993). Alfalfa saponins and sapogenins: Isolation and quantification in two different cultivars. Phytochemical Analysis, 4, 269–274.

    Article  CAS  Google Scholar 

  • Thorne, G., & Allen M. W. (1950). Paratylenchus hamamatus n. sp. and Xiphinema index n. sp. two nematodes associated with fig roots, with a note on Paratylenchus anceps Cobb. Proceedings of the Helminthological Society of Washington, 17, 27–35.

    Google Scholar 

  • UNEP, United Nations Environment Programme (2000). The montreal protocol on substances that deplete the ozone layer.

  • Yamashita, T. T., & Viglierchio, D. R. (1987). In vitro testing for nonfumigant nematicide resistance in Xiphinema index. Revue de Nématologie, 10, 75–79.

    CAS  Google Scholar 

Download references


The authors are grateful to the Italian “Ministero dell’Università e della Ricerca Scientifica” and “Ministero delle Politiche Agricole e Forestali” for financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pinarosa Avato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argentieri, M.P., D’Addabbo, T., Tava, A. et al. Evaluation of nematicidal properties of saponins from Medicago spp.. Eur J Plant Pathol 120, 189–197 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: