European Journal of Plant Pathology

, Volume 120, Issue 1, pp 69–77 | Cite as

Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani

  • C. L. Shrestha
  • I. Oña
  • S. Muthukrishnan
  • T. W. Mew
Full Research Paper


Various rice cultivars were selected and screened for their reaction to sheath blight in the greenhouse. Cluster analysis of percent relative lesion height (% RLH) generated four groups of cultivars with a coefficient of similarity of 3.27. Chitinase activities were detected 24 h after inoculation of moderately resistant cvs Betichikon, Dudruchi, Khatochalani, Padi Pulut Malat, Kakua, IR72, Khakibinni. But in the susceptible cv. IR58, chitinase activity was detected only 36 h after inoculation. Western blot analysis showed that class 1 and class 2 chitinases were induced following Rhizoctoniasolani infection of these cultivars. The % RLH and the number of infection cushions were negatively correlated with the level of chitinase activity. Moderately resistant rice cultivars had higher levels of chitinase activity and lower disease severity and numbers of infection cushions formed compared to IR58.


Chitinases Disease resistance Rice Sheath blight 


  1. Ahn, S. W., de la Peña, R. C., Candole, B. L., & Mew, T. W. (1986). A new scale for rice sheath blight (ShB) assessment. International Rice Research Newsletter, 11, 17.Google Scholar
  2. Anuratha, C. S., Zen, K. C., Cole, K. C., Mew, T., & Muthukrishnan, S. (1996). Induction of chitinases and β-1,3 glucanases in Rhizoctonia solani infected rice plants: Isolation of an infection-related chitinase cDNA clone. Physiologia Plantarum, 97, 39–46.CrossRefGoogle Scholar
  3. Baisakh, N., Datta, K., Oliva, N., Ona, I., Rao, G. J. N., Mew, T. W., et al. (2001). Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnology, 18, 101–108.CrossRefGoogle Scholar
  4. Benhamou, M., Joosten, M. H. A. I., & De Wit, P. J. G. M. (1990). Subcellular localization of chitinase and of its potential substrate in tomato root tissues infected by Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiology, 92, 1108–1120.PubMedGoogle Scholar
  5. Benhamou, N., Broglie, K., Broglie, R., & Chet, I. (1993). Antifungal effect of bean endochitinase on Rhizoctonia solani: Ultrastructural changes and cytochemical aspects of chitin breakdown. Canadian Journal of Microbiology, 39, 318–328.PubMedCrossRefGoogle Scholar
  6. Bonman, J. M., Khush, G. S. & Nelson, R. J. (1992). Breeding rice for resistance to pests. Annual Review of Phytopathology, 30, 507–526.CrossRefGoogle Scholar
  7. Broglie, K., Chet, I., Holliday, M., Crassman, R., Biddle, P., Knowlton, S., et al. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 254, 1194–1197.PubMedCrossRefGoogle Scholar
  8. Buchter, R., Stromberg, A., Scmelzer, E., & Kombrink, B. (1997). Primary structure and expression of acidic (class II) chitinase in potato. Plant Molecular Biology, 35, 749–761.PubMedCrossRefGoogle Scholar
  9. Cachinero, J. M., Cabello, F., Jorrin, J., & Tena, M. (1996). Induction of different chitinase and β-1,3-glucanase isoenzymes in sunflower (Helianthus annuus L.) seedlings in response to infection by Plasmopara halstedii. European Journal of Plant Pathology, 102, 401–405.CrossRefGoogle Scholar
  10. Datta, K., Muthukrishnan, S., & Datta, S. K. (1999). Expression and function of PR-protein genes in transgenic plants. In S. K. Datta & S. Muthukrishnan (Eds.), Pathogenesis related proteins in Plants (pp. 261–277). Boca Raton, FL: CRS.Google Scholar
  11. Datta, K., Koukolikova-Nicola, R., Baisakh, N., Oliva, N., & Datta, S. K. (2000). Agrobacterium mediated engineering for sheath blight resistance of Indica rice cultivars from different rice ecosystems. Theoretical and Applied Genetics, 100, 832–839.CrossRefGoogle Scholar
  12. Datta, K., Jumin, T., Oliva, N., Ona, I., Velazhahan, R., Mew, T. W., et al. (2001). Enhanced resistance to sheath blight by constitutive expression of infection related rice chitinase in transgenic elite indica rice cultivars. Plant Science, 160, 405–414.PubMedCrossRefGoogle Scholar
  13. Datta, K., Baisakh, N., Thet, K. M., Tu, K., & Datta, S. K. (2002). Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theoretical and Applied Genetics, 106, 1–8.PubMedGoogle Scholar
  14. Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd Ed). Singapore: Wiley.Google Scholar
  15. Hein, M. (1990). Reaction of germplasms to sheath blight of rice. Myanmar Journal of Agricultural Science, 2, 1–12.Google Scholar
  16. Ignatius, S. M. J., Chopra, R. K., & Muthukrishnan, S. (1994). Effects of fungal infection and wounding on the expression of chitinases and β-1,3-glucanases in near isogenic lines of barley. Physiologia Plantarum, 90, 584–592.CrossRefGoogle Scholar
  17. Kalpana, K., Maruthasalam, S., Rajesh, T., Poovannan, K., Kumar, K. K., Kokiladevi, E., et al. (2006). Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Science, 170, 203–215.CrossRefGoogle Scholar
  18. Kumar, K. K., Poovannan, K., Nandakumar, R., Thamilarasi, K., Geetha, C., Nirmalkumar, J., et al. (2003). A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against sheath blight pathogen, Rhizoctonia solani. Plant Science, 165, 969–975.CrossRefGoogle Scholar
  19. Legrand, M., Kauffmann, S., Geoffroy, P., & Fritig, B. (1987). Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proceeding of National Academy of Sciences, 84, 6750–6754.CrossRefGoogle Scholar
  20. Lin, W., Anuratha, C. S., Datta, K., Potrykus, I., Muthukrishnan, S., & Datta, S. K. (1995). Genetic engineering of rice for resistance to sheath blight. Bio/Technology, 13, 686–691.CrossRefGoogle Scholar
  21. Mauch, F., Meehl, J. B., & Staehelin, A. (1992). Ethylene-induced chitinase and β-1,3-glucanase accumulate specifically in the lower epidermis and along vascular strands of bean leaves. Planta, 186, 367–375.CrossRefGoogle Scholar
  22. Metraux, J. P., & Boller, T. (1986). Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiological and Molecular Plant Pathology, 28, 161–169.Google Scholar
  23. Metraux, J. P., Streit, L., & Staub, T. (1988). A pathogenesis-related protein in cucumber is a chitinase. Physiological and Molecular Plant Pathology, 33, 1–9.CrossRefGoogle Scholar
  24. Mew, T. W., & Rosales, A. M. (1986). Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology, 76, 1260–1264.CrossRefGoogle Scholar
  25. Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., & Samiyappan, R. (2001). Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescence. Soil Biology and Biochemistry, 33, 603–612.CrossRefGoogle Scholar
  26. Neha, K. S., Chugh, L. K., Dhillon, S., & Singh, R. (1994). Induction, purification and characterization of chitinases from chickpea (Cicer arietinum L.) leaves and pods infected with Ascochyta rabiei. Plant Physiology, 144, 7–11.Google Scholar
  27. Nishizawa, Y., & Hibi, Y. T. (1991). Rice chitinase gene: cDNA cloning and stress-induced expression. Plant Science, 76, 211–218.CrossRefGoogle Scholar
  28. Nishizawa, Y., Nishio, Z., Nakazono, K., Soma, M., Nakajima, E., Ugaki, M., et al. (1999). Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theoretical and Applied Genetics, 99, 283–290.Google Scholar
  29. Ou, S. H. (1985). Rice diseases (2nd Ed.). Kew, Surrey, UK: Commonwealth Mycological Institute Publication.Google Scholar
  30. Radiacommare, R., Kandan, A., Nandakumar, R., & Samiyappun, R. (2004). Association of hydrolytic enzyme chitinase against Rhizoctonia solani in Rhizobacteria treated rice plants. Journal of Phytopathology, 152, 365–370.CrossRefGoogle Scholar
  31. Rasmussen, U., Giese, H., & Mikkelsen, H. J. D. (1992). Induction and purification of chitinase in Brassica napus L. spp. oleifera infected with Phoma lingam. Planta, 187, 328–334.CrossRefGoogle Scholar
  32. Roberts, W. K., & Selitrennikoff, C. P. (1988). Plant and bacterial chitinases differ in antifungal activity. Journal of General Microbiology, 134, 169–176.Google Scholar
  33. Roby, D., Toppan, A., & Esquerre-Tugaye, M. T. (1988). Systemic induction of chitinase activity and resistance in melon plants upon fungal infection or elicitor treatment. Physiological and Molecular Plant Pathology, 33, 409–417.CrossRefGoogle Scholar
  34. Sareena, S., Poovannan, K., Kumar, K. K., Raja, J. A. J., Samiyappan, R., Sudhakar, D., et al. (2006). Biochemical responses in transgenic rice plants expressing a defence gene deployed against the sheath blight pathogen, Rhizoctonia solani. Current Science, 91, 1529–1532.Google Scholar
  35. Savary, S., & Mew, T. W. (1996). Analyzing crop losses due to Rhizoctonia solani: Rice sheath blight, a case study. In B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species, taxonomy, molecular biology, ecology, pathology and disease control (pp. 237–245). Netherlands: Kluwer.Google Scholar
  36. Savary, S., Willocquet, L., Elazegui, F. A., & Teng, P. S. (2000). Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Disease, 84, 357–369.CrossRefGoogle Scholar
  37. Sharma, N. R., Teng, P. S., & Olivares, F. M. (1990). Effect of inoculum source on sheath blight (ShB) development. International Rice Research Newsletter, 15, 6.Google Scholar
  38. Smith, P. K, Krohn, R. L., Hermanson, G. T., Mallia, A. R., & Gartina, F. H. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.PubMedCrossRefGoogle Scholar
  39. Tabai, Y., Kibade, S., Nishizawa, Y., Kikuchi, N. L., Keyani, T., Hibi, I., et al. (1998). Transgenic cucumber plants harbouring a rice chitinase gene exhibit enhanced resistant to gray mold (Botrytis cinerea). Plant Cell Reporter, 17, 159–164.CrossRefGoogle Scholar
  40. van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753–765.CrossRefGoogle Scholar
  41. van Loon, L. C., Bakkar, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.PubMedCrossRefGoogle Scholar
  42. van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.PubMedCrossRefGoogle Scholar
  43. Vierheilig, H., Alt, H. M., Neuhaus, J. M., Boller, T., & Wiemken, A. (1993). Colonization of transgenic Nicotiana sylvestris plants expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseau. Molecular Plant–Microbe Interactions, 6, 261–264.Google Scholar
  44. Winston, S. E., Fuller, S. A., & Hurrell, J. G. R. (1987). Western blotting. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, & K. Struhl (Eds.), Current protocols in molecular biology (pp. 10.8.1–10.8.6).Wiley: New York.Google Scholar
  45. Wirth, S. J., & Wolf, G. A. (1990). Dye-labeled substrates for the assay and detection of chitinase and lysozyme activity. Journal of Microbiological Methods, 12, 197–215.CrossRefGoogle Scholar
  46. Wubben, J. P., Lawrence, C. B. & de Wit, P. J. G. M. (1996) Differential induction of chitinase and 1,3-β-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors. Physiological and Molecular Plant Pathology, 48, 105–116.CrossRefGoogle Scholar
  47. Xu, Y., Zhu, Q., Panbangred, W., Shirasu, K., & Lamb, K. C. (1996). Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Molecular Biology, 30, 387–401.PubMedCrossRefGoogle Scholar
  48. Yeboah, N. A., Arahira, M., Nong, V. H., Zhang, D., Kadokura, K., Watanabe, A., & Fukazawa, C. (1998). A class III acidic endochitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Plant Molecular Biology, 36, 407–415.PubMedCrossRefGoogle Scholar
  49. Zhu, Q., & Lamb, C. J. (1991). Isolation and characterization of a rice gene encoding a basic chitinase. Molecular and General Genetics, 226, 289–296.PubMedCrossRefGoogle Scholar
  50. Zhu, Q., Maher, E. A., Masoud, S., Dixon, R. A., & Lamb, C. J. (1994). Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology, 12, 807–812.CrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • C. L. Shrestha
    • 1
  • I. Oña
    • 1
  • S. Muthukrishnan
    • 2
  • T. W. Mew
    • 1
  1. 1.Entomology and Plant Pathology DivisionInternational Rice Research Institute (IRRI)Los BañosPhilippines
  2. 2.Department of BiochemistryKansas State UniversityManhattanUSA

Personalised recommendations