Skip to main content
Log in

Mycorrhizal protection of chili plants challenged by Phytophthora capsici

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) has been implicated in many stress conditions. Control of H2O2 levels is complex and dissection of mechanisms generating and relieving H2O2 stress is difficult, particularly in intact plants. Here the role of the mycorrhizal inoculation in chili plants challenged with Phytophthora capsici was investigated to study the effect on hypersensitive response. In the treatment without mycorrhiza (treatment T3) and with mycorrhiza (considered treatment T4) visible disorders were detected two days after inoculation with P. capsici, but in the next days T3 plants rapidly developed 25% more necrotic lesions on the leaves than T4 plants. Leaf necrosis correlated with H2O2 accumulation and the greater damage observed in T3 plants coincided with larger accumulation of H2O2 after 12 h of inoculation accompanied with an increase in POX (peroxidase) and SOD (superoxide dismutase) activity. T4-infected and mycorrhizal plants exhibited an earlier accumulation of H2O2 starting 6 h after inoculation with lower levels compared to T3 plants. Correlated with observed damage, POX and SOD activity measured in T4 plants indirectly suggest a smaller accumulation of ROS (reactive oxygen species) leading to a decrease in the wounds observed and slightly diminishing the advance of the pathogen. According to these findings, we conclude that mycorrhizal colonization contributes significantly in maintaining the redox balance during oxidative stress, but the exact mechanism is still uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blackman, L. M., Mitchell, H. J., & Hardham, A. N. (2005). Characterization of manganese superoxide dismutase from Phytophthora nicotianae. Mycological Research, 109, 1171–1183.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, W. F., & Fridowich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes conditions. Analytical Biochemistry, 161, 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Cordier, C., Gianinazzi, S., & Gianinazzi-Pearson, V. (1996). Colonization patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant and Soil, 185, 223–232.

    Article  CAS  Google Scholar 

  • Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., & Gianinazzi-Pearson V. (1998). Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions, 11, 1017–1028.

    Article  CAS  Google Scholar 

  • Drenth, A., & Goodwin, S. B. (1999). Population structure: Oomycetes. In J. J. Worral (Ed.), Structure and dynamics of fungal populations (pp. 195–224). Dordrech, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS Press.

    Google Scholar 

  • Fester, T., & Hause, G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza, 15, 5–373.

    Article  CAS  Google Scholar 

  • García-Garrido, J. M., & Ocampo, J. A. (2002). Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 53, 1377–1386.

    Article  PubMed  Google Scholar 

  • García-Garrido, J. M., Ocampo, J. A., & García-Romera, I. (2002). Enzymes in the arbuscular mycorrhizal symbiosis. In R. Burns & R. Dick (Eds.), Enzymes in the environment activity, ecology and applications. New York: Marcel Dekker.

    Google Scholar 

  • Gianinazzi-Pearson, V. (1996). Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. The Plant Cell, 8, 1871–1883.

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A., & Gianinazzi, S. (1996). Cellular and molecular defence-related roots responses to invasion by arbuscular mycorrhizal fungi. New Phytologist, 133, 45–57.

    Article  Google Scholar 

  • Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Guillon, C., St-Arnaud, M., Hamel, C., & Jabaji-Hare, S. H. (2002). Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Canadian Journal of Botany, 80, 305–315.

    Article  CAS  Google Scholar 

  • Hwang, S. F., Chang, K. F., & Chakravarty, P. (1992). Effects of vesicular arbuscular mycorrhizal fungi on the development of Verticillium and Fusarium wilts of alfalfa. Plant Disease, 76, 239–243.

    Article  Google Scholar 

  • Hwang, B. K., Sunwoo, J. Y., Kim, J. K., & Kim, B. S. (1997). Accumulation of β-1,3-glucanase and chitinase isoforms, and salicylic acid in the DL-b-amino-n-butyric acid-induced resistance response of pepper stems to Phytophthora capsici. Physiological and Molecular Plant Pathology, 51, 305–322.

    Article  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Lanfranco, L., Novero, M., & Bonfante, P. (2005). The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiology, 137, 1319–1330.

    Article  PubMed  CAS  Google Scholar 

  • Lingua, G., D’Angostino, G., Massa, N., Antosiano, M., & Berta, G. (2002). Mycorrhiza-induced differential response to a yellows in tomato. Mycorrhiza, 12, 191–198.

    Article  PubMed  Google Scholar 

  • Mark, G. L., & Cassells, A. C. (1996). Genotype-dependence in the interaction between Glomus fistulosum, Phytophthora fragariae and the wild strawberry (Fragaria vesca). Plant and Soil, 185, 233–239.

    Article  CAS  Google Scholar 

  • Mayer, A. M., Staples, R. C., & Gil-ad, N. L. (2001). Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry, 58, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Mehdy, C. M. (1994). Active oxygen species in plant defence against pathogens. Plant Physiology, 105, 467–472.

    PubMed  CAS  Google Scholar 

  • Norman, J. R., Atkinson, D., & Hooker, J. E. (1996). Arbuscular mycorrhizal fungal-induced alteration to the root architecture in strawberry and induced resistance to the pathogen Phytophthora fragariae. Plant Soil, 185, 191–198.

    Article  CAS  Google Scholar 

  • Park, H., Miura, Y., Kawakita, K., Yoshioka, H., & Doke, N. (1998). Physiological mechanisms of a sub-systemic oxidative burst triggered by elicitor-induced local oxidative burst in potato tuber slices. Plant Cell Physiology, 39, 1218–1225.

    CAS  Google Scholar 

  • Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158–161.

    Article  Google Scholar 

  • Pozo, M. J., Azcon-Aguilar, C., Dumas-Gaudot, E., & Barea, J. M. (1999). b-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Science, 141, 149–157.

    Article  CAS  Google Scholar 

  • Pozo, M. J., Codier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., & Azcon-Aguilar, C. (2002). Localized versus systemic effect of arbuscular mycorrhizal fungi on defence response to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53, 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Qutob, D. Kamoun, S., & Gijzen, M. (2002). Expression of Phytopthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. The Plant Cell, 32, 361–373.

    CAS  Google Scholar 

  • Selvaraj, T., & Chellappan, P. (2006). Arbuscular mycorrhizae: A diverse personality. Journal of Central European Agriculture, 7, 349–358.

    Google Scholar 

  • Sulman, M., Fox, G., Osman, A., Inkerman, A., Williamson, P., & Michalowitz, M. (2001). Relationship between total peroxidase activity and susceptibility to black point in mature grain of some barley cultivars. Proceedings of the 10th Australian barley technical symposium.

  • Thaler, J. S., Stout, M. J., Karban, R., & Duffey, S. S. (1996). Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. Journal of Chemical Ecology, 22, 1767–1781.

    Article  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. The Plant Journal, 11, 1187–1194.

    Article  CAS  Google Scholar 

  • Wang, Y., Ke, Y., & Pan, T. (2002). Effects of different mycorrhizal fungi on physiological metabolism of tobacco seedlings. Ying Yong Sheng Tai Xue Bao, 13, 87–90.

    PubMed  CAS  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    PubMed  CAS  Google Scholar 

  • Xu, X. L., & Ko, W. H. (1998). A quantitative confined inoculation method for studies of pathogenicity of fungi on plants. Botanical Bulletin of Academia Sinica, 39, 187–190.

    Google Scholar 

  • Zheng, H. Z., Cui, C. L., Zhang, Y. T., Wang, D., Jing, Y., & Kim, K. Y. (2005). Active changes of lignifications-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici. Journal of Zhejiang University Science B, 6, 778–786.

    PubMed  Google Scholar 

  • Zhu, H. H., & Yao, Q. (2004). Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibit Ralstonia solanacearum. Journal of Phytopathology, 152, 537–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported for the Consejo Nacional de Ciencia y Tecnología de México (CONACYT). Alejo-Iturvide F, is a recipient of the CONACYT in order to obtain his PhD (129128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Olalde-Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alejo-Iturvide, F., Márquez-Lucio, M.A., Morales-Ramírez, I. et al. Mycorrhizal protection of chili plants challenged by Phytophthora capsici . Eur J Plant Pathol 120, 13–20 (2008). https://doi.org/10.1007/s10658-007-9188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9188-7

Keywords

Navigation