Skip to main content
Log in

Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants

  • Short Communication
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants was investigated using different bioassays. Application of IAA (5 μg ml−1) on tomato seedlings inoculated with P. ultimum did not affect their emergence suggesting that IAA did not affect the severity of Pythium damping-off. However, IAA was shown to influence the development of P. ultimum symptoms on tomato plantlets. Low concentrations of IAA (0–0.1 μg ml−1) within the rhizosphere of plantlets increased the severity of the symptoms caused by P. ultimum, while higher concentrations (10 μg ml−1), applied either by drenching to the growing medium or by spraying on the shoot, reduced the symptoms caused by this pathogen. In addition, the study demonstrated that P. ultimum produces IAA in liquid culture amended with L-tryptophan, tryptamine or tryptophol (200 μg ml−1) and in unamended culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Chérif, M., Benhamou, N., & Bélanger, R. R. (1991) Ultrastructural and cytochemical studies of fungal development and host reactions in cucumber plants infected by Pythium ultimum. Physiological and Molecular Plant Pathology, 39, 353–375.

    Article  Google Scholar 

  • Désilets, H., & Bélanger, R. R. (1991) An in vitro system for studying the effects of Pythium ultimum metabolites on Pelargonium hortorum. Phytopathology, 81, 202–206.

    Article  Google Scholar 

  • Désilets, H., Benhamou, N., & Bélanger, R. R. (1994) A comparative study of histological and ultrastructural alterations induced by Pythium ultimum or its metabolites on geranium (Pelargonium) roots. Physiological and Molecular Plant Pathology, 45, 21–36.

    Article  Google Scholar 

  • Fernández-Falcón, M., Borges, A. A., & Borges-Pérez, A. (2003) Induced resistance to Fusarium wilt of banana by exogenous applications of indolacetic acid. Phytoprotection, 84, 149–153.

    Google Scholar 

  • Furukawa, T., Koga, J., Adachi, T., Kishi, K., & Syono, K. (1996) Efficient conversion of L-tryptophan to indole-3-acetic acid and/or tryptophol by some species of Rhizoctonia. Plant Cell Physiology, 37, 899–905.

    CAS  Google Scholar 

  • Gordon, S. A., & Weber, R. P. (1951) Colorimetric estimation of indoleacetic acid. Plant Physiology, 26, 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, K., & Strittmatter, G. (1994) Pathogen-defence gene prp1–1 from potato encodes an auxin-responsive glutathione S-transferase. European Journal of Biochemistry, 226, 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Hasan, H. A. H. (2002) Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinná Výroba, 48, 101–106.

    CAS  Google Scholar 

  • Hendrix, F. F. Jr, & Campbell, W. A. (1973) Pythiums as plant pathogens. Annual Review of Phytopathology, 11, 77–98.

    Article  Google Scholar 

  • Jameson, P. (2000) Cytokinins and auxins in plant-pathogen interactions–an overview. Plant Growth Regulation, 32, 369–380.

    Article  CAS  Google Scholar 

  • Le Floch, G., Rey, P., Benizri, E., Benhamou, N, & Tirilly, Y. (2003a) Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant and Soil, 257, 459–470.

    Article  CAS  Google Scholar 

  • Le Floch, G., Rey, P., Déniel, F., Benhamou, N, Picard, K., & Tirilly, Y. (2003b) Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum. Agronomie, 23, 455–460.

    Article  Google Scholar 

  • Martínez Noël, G. M. A., Madrid, E. A., Bottini, R., & Lamattina, L. (2001) Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiology and Biochemistry, 39, 815–823.

    Article  Google Scholar 

  • Patten, C. L., & Glick, B. R. (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    Article  PubMed  CAS  Google Scholar 

  • Persello-Cartieaux, F., Nussaume, L., & Robaglia, C. (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell and Environment, 26, 189–199.

    Article  CAS  Google Scholar 

  • Rey, P., Leucart, S., Désilets, H., Bélanger, R. R., Larue, J. P., & Tirilly, Y. (2001) Production of indole-3-acetic acid and tryptophol by Pythium ultimum and Pythium group F: possible role in pathogenesis. European Journal of Plant Pathology, 107, 895–904.

    Article  CAS  Google Scholar 

  • Scott, T. K. (1972) Auxins and roots. Annual Review of Plant Physiology, 23, 235–258.

    Article  CAS  Google Scholar 

  • Shimada, A., Takeuchi, S., Nakajima, A., Tanaka, S., Kawano, T., Kimura, Y. (1999) Phytotoxicity of indole-3-acetic acid produced by the fungus, Pythium aphanidermatum. Bioscience Biotechnology and Biochemistry, 63, 187–189.

    Article  Google Scholar 

  • Slininger, P. J., Burkhead, K. D., & Schisler, D. A. (2004) Antifungal and sprout regulatory bioactivities of phenylacetic acid, indole-3-acetic acid, and tyrosol isolated from the potato dry rot suppressive bacterium Enterobacter cloacae S11:T:07. Journal of Industrial Microbiology and Biotechnology, 31, 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (1991) Auxins: Growth and Tropisms. In E. Zeiger (Ed.), Plant Physiology (pp. 398–425). Benjamin/Cunnings: Hardcover.

    Google Scholar 

  • Ueno, M., Kihara, J., Honda, Y., & Arase, S. (2004) Indole-related compounds induce the resistance to rice blast fungus, Magnaporthe grisea in barley. Journal of Phytopathology, 152, 606–612.

    Article  CAS  Google Scholar 

  • Vessey, J. K. (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Yamada, T. (1993) The role of auxin in plant-disease development. Annual Review of Phytopathology, 31, 253–273.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Fonds québécois de recherche sur la nature et les technologies (FQRNT) as well as the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Tweddell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravel, V., Antoun, H. & Tweddell, R.J. Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur J Plant Pathol 119, 457–462 (2007). https://doi.org/10.1007/s10658-007-9170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9170-4

Keywords

Navigation