Skip to main content

Advertisement

Log in

Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance nodulation of legumes when coinoculated with Rhizobium. To optimize the efficiency of these Rhizobium-PGPR-host plant interactions, unravelling the underlying mechanisms and analyzing the influence of specific environmental conditions is crucial. In this work the effect of four PGPR strains on the symbiotic interaction between Rhizobium and common bean (Phaseolus vulgaris) was studied under deficient versus sufficient phosphorus supply. It was observed that the effect on nodulation of three out of four PGPR tested was strongly dependent on P nutrition. Further, the use of specific PGPR mutant strains indicated that bacterial indole-3-acetic-acid production (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity play an important role in the host nodulation response, particularly under low P conditions. Moreover, it was shown that the differential response to PGPR under low versus high P conditions was associated with changes in the host hormone sensitivity for nodulation induced under P deficiency. These findings contribute to the understanding of the interplay between Rhizobium, PGPR and the plant host under different environmental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Ghazi, Y., Muller, B., Pinloche, S., Tranbarger, T. J., Rossignol, M., Tardieu, F., & Doumas, P. (2003). Temporal responses of Arabidopsis root architecture to phosphate starvation: Evidence for the involvement of auxin signaling. Plant, Cell and Environment, 26, 1053–1066.

    Article  CAS  Google Scholar 

  • Al-Niemi, T. S., Kahn, M. L., & McDermott, T. R. (1997). P metabolism in the bean-Rhizobium-tropici symbiosis. Plant Physiology, 113, 1233–1242.

    PubMed  CAS  Google Scholar 

  • Bai, Y., Panb, B., Charlesc, T., & Smith, D. (2002). Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biology and Biochemistry, 34, 1953–1957.

    Article  CAS  Google Scholar 

  • Bai, Y., Zhou, X., & Smith, D. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43, 1174–1781.

    Google Scholar 

  • Baldani, V. L. D., Alvarez, M. A. B., Baldani, J. I., & Döbereiner, J. (1986). Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil, 90, 37–40.

    Article  Google Scholar 

  • Bolton, H., Elliott, L. F., Turco, R. F., & Kennedy, A. C. (1990). Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil, 123, 121–124.

    Google Scholar 

  • Borch, K., Bouma, T. J., Lynch, J. P., & Brown, K. M. (1999). Ethylene: A regulator of root architectural responses to soil phosphorus availability. Plant Cell Environment, 22, 425–431.

    Article  CAS  Google Scholar 

  • Broughton, W. J., Hernander, G., Blair, B., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant Soil, 252, 55–128.

    Article  CAS  Google Scholar 

  • Burdman, S., Kigel, J., & Okon, Y. (1997). Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biology and Biochemistry, 29, 923–929.

    Article  CAS  Google Scholar 

  • Burdman, S., Volpin, H., Kigel, J., Kapulnik, Y., & Okon, Y. (1996). Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Applied and Environmental Microbiology, 62, 3030–3033.

    PubMed  CAS  Google Scholar 

  • Burns, T. A., Bishop, P. E., & Israel, D. W. (1981). Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandi and damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Applied and Environmental Microbiology, 62, 865–871.

    Google Scholar 

  • Camacho, M., Santamaria, C., Temprano, F., Rodriguez-Navarro, D. N., & Daza, A. (2001). Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Canadian Journal of Microbiology, 47, 1058–1062.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, I., & Graham, P. H. (2002). Variation in di-nitrogen fixation among Andean bean (Phaseolus vulgaris L.) genotypes grown at low and high levels of phosphorus supply. Fields Crops Research, 73, 133–142.

    Article  Google Scholar 

  • Chun, J., & Bae, K. S. (2000). Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Leeuwenhoek, 78, 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Costacurta, A., Keijers, V., & Vanderleyden, J. (1994). Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Molecular and General Genetics, 243, 463–472.

    PubMed  CAS  Google Scholar 

  • Dashti, N., Zhang, F., Hynes, R., & Smith, D. L. (1998). Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil, 200, 205–213.

    Article  CAS  Google Scholar 

  • Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., & Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil, 212, 155–164.

    Article  CAS  Google Scholar 

  • Franzluebbers, K., Hossner, L. R., & Juo, A. S. R. (1998). Integrated nutrient management for sustained crop production in sub-Saharan agriculture. Trop Soils/TAMU Technical Bulletin No. 98-03, 50 pp.

  • Glick, B. R., Karaturovíc, D. M., & Newell, P. C. (1995). A novel procedure for rapid isolation of plant growth-promoting pseudomonads. Canadian Journal of Microbiology, 41, 533–536.

    Article  CAS  Google Scholar 

  • Goel, A. K., Sindhu, S. S., & Dadarwal, K. R. (2002). Stimulation of nodulation and plant growth of chickpea (Cicer arietnum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biology and Fertility of Soils, 36, 391–396.

    Article  CAS  Google Scholar 

  • Graham, P. H. (1981). Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: A review. Field Crops Research, 4, 93–112.

    Article  Google Scholar 

  • Graham, P. H., & Rosas, J. C. (1979). Phosphorus fertilization and symbiotic nitrogen fixation in common bean. Agronomy Journal, 71, 925–926.

    Article  CAS  Google Scholar 

  • Hamaoui, B., Abbadi, J. M., Burdman, S., Rashid, A., Sarig, S., & Okon, Y. (2001). Effects on inoculation with Azospirillum brasilense on chickpeas (Cicer arietum) and faba beans (Vicia faba) under different growth conditions. Agronomie, 21, 553–560.

    Article  Google Scholar 

  • Hontzeas, N., Saleh, S. S., & Glick, B. R. (2004). Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Molecular Plant Microbe Interactions, 17, 865–871.

    Article  PubMed  CAS  Google Scholar 

  • Kouas, S., Labidi, N., Debez, A., & Abdelly, C. (2005). Effect of P on nodule formation and N fixation in bean. Agronomy for Sustainable Development, 25, 389–393.

    Article  CAS  Google Scholar 

  • Li, J., Ovakim, D. H., Charles, T. C., & Glick, B. R. (2000). An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Current Microbiology, 41, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., Nieto-Jacobo, M. F., Simpson, J., & Herrera-Estrella, L. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology, 129, 244–256.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe-plant interactions: Principles and mechanisms. Antonie Leeuwenhoek, 81, 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Ma, W., Charles, T. C., & Glick, B. R. (2004). Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Environmental Microbiology, 70, 5891–5897.

    Article  CAS  Google Scholar 

  • Michiels, J., Moris, M., Dombrecht, B., Verreth, C., & Vanderleyden, J. (1998). Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. Journal of Bacteriology, 180, 3620–3628.

    PubMed  CAS  Google Scholar 

  • Oldroyd, G. E., Engstrom, E. M., & Long, S. R. (2001). Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell, 13, 1835–1849.

    Article  PubMed  CAS  Google Scholar 

  • Ona, O., Van Impe, J., Prinsen, E., & Vanderleyden, J. (2005). Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiology Letters, 246, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa, R. V., & Cook, D. R. (1997). A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 257, 527–530.

    Article  Google Scholar 

  • Pepper, J. L. (2000). Beneficial and pathogenic microbes in agriculture. In R. M. Maier et al. (Eds.), Environmental microbiology. San Diego: Academic Press.

    Google Scholar 

  • Pereira, P. A., & Bliss, F. A. (1987). Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil, 104, 79–84.

    Article  CAS  Google Scholar 

  • Persello-Cartieaux, F., Nussaume, L., & Robaglia, C. (2003). Tales from the underground: Molecular plant-rhizobacteria interactions. Plant, Cell and Environment, 26, 189–199.

    Article  CAS  Google Scholar 

  • Plazinski, J., & Rolfe B. G. (1985a). Azospirillum–Rhizobium interaction leading to a plant growth stimulation without nodule formation. Canadian Journal of Microbiology, 31, 1026–1030.

    Article  CAS  Google Scholar 

  • Plazinski, J., & Rolfe, B. G. (1985b). Interaction of Azospirillum and Rhizobium strains leading to inhibition of nodulation. Applied and Environmental Microbiology, 49, 990–993.

    PubMed  CAS  Google Scholar 

  • Plazinski, J., & Rolfe, B. G. (1985c). Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Applied and Environmental Microbiology, 49, 984–989.

    PubMed  CAS  Google Scholar 

  • Rainey, P. B., & Bailey, M. J. (1996). Physical map of the Pseudomonas fluorescens SBW25 chromosome. Molecular Microbiology, 19, 521–533.

    Article  PubMed  CAS  Google Scholar 

  • Raverker, K. P., & Konde, B. K. (1988). Effect of Rhizobium and Azospirillum lipoferum inoculation on nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil, 106, 249–252.

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • SAS Institute (1996). SAS user’s guide: Statistics (6th ed.). Cary, NC: SAS Institute.

    Google Scholar 

  • Schulze, J., Temple, G., Temple, S. J., Beschow, H., & Vance, C. P. (2006). Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany, 98, 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Sindhu, S. S., Gupta, S. K., & Dadarwal, K. R. (1999). Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biology and Fertility of Soils, 29, 62–68.

    Article  CAS  Google Scholar 

  • Smith, D. L., & Hume, D. J. (1987). Comparison of assay methods for nitrogen fixation utilizing white bean and soybean. Canadian Journal of Plant Science, 67, 11–79.

    Article  CAS  Google Scholar 

  • Snoeck, C., Verreth, C., Hernandez-Lucas, I., Martínez-Romero, E., & Vanderleyden, J. (2003). Identification of a third sulfate activation system in Sinorhizobium sp. strain BR816: The CysDN sulfate activation complex. Applied and Environmental Microbiology, 69, 2006–2014.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M., Petersen, D. J., & Holl, F. B. (1997). Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnobiotic conditions. Canadian Journal of Microbiology, 42, 1006–1014.

    Google Scholar 

  • Tchebotar, V. K., Kang, U. G., Asis, C. A., & Akao, J. S. (1998). The use of GUS-reporter gene to study the effect of Azospirillum–Rhizobium coinoculation on nodulation of white clover. Biology and Fertility of Soils, 27, 349–352.

    Article  CAS  Google Scholar 

  • Thilak, K. V. B. R., Ranganayaki, N., & Manoharachari, C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science, 57, 67–71.

    Article  Google Scholar 

  • Thung, M. (1991). Bean agronomy in monoculture. In A. V. Schoonhoven & O. Voysest (Eds.), Common beans. Research for crop improvement (pp. 737–834). Wallingford, UK: CAB International.

    Google Scholar 

  • Vadez, V., Lasso, J. H., Beck, D. P., & Drevon, J. J. (1999). Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency. Euphytica, 106, 231–242.

    Article  Google Scholar 

  • Vance, C. P. (1997). Enhanced agricultural sustainability through biological nitrogen fixation. In A. Legocki et al. (Eds.), Biological fixation of nitrogen for ecology and sustainable agriculture. Heidelberg, Germany: NATO ASI Series, Springer-Verslag.

    Google Scholar 

  • Vance, C. P., Graham, P. H., & Allan, D. L. (2000). Biological nitrogen fixation: Phosphorus-a critical need. In F. A. Pedrosa et al. (Eds.), Nitrogen fixation: From molecules to crop productivity (pp. 509–514). Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Vande Broek, A., Lambrecht, M., Eggermont, K., & Vanderleyden, J. (1999). Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Journal of Bacteriology, 181, 1338–1342.

    PubMed  CAS  Google Scholar 

  • Van Noorden, G. E., Ross, J. J., Reid, J. B., Rolfe, B. G., & Mathesius, U. (2006). Defective long distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant. Plant Physiology, 140, 1494–1506.

    Article  PubMed  CAS  Google Scholar 

  • Vessey, K., & Buss, T. J. (2002). Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes – Controlled-environment studies. Canadian Journal of Plant Science, 82, 282–290.

    Google Scholar 

  • Vincent, J. M. (1970). A manual for the practica1 study of root-nodule bacteria. Oxford: Blackwell Scientific Publishers.

    Google Scholar 

  • Vlassak, K. M., Luyten, E., Verreth, C., van Rhijn, P., Bisseling, T., & Vanderleyden, J. (1998). The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris and Trifolium repens by a diversity of Rhizobium spp. Molecular Plant Microbe Interactions, 5, 383–392.

    Article  Google Scholar 

  • Volpin, H., Burdman, S., Castro-Sowinski, S., Kapulnik, Y., & Okon, Y. (1996). Inoculation with Azospirillum increased exudation of Rhizobial nod-gene inducers by alfalfa roots. Molecular Plant Microbe Interactions, 1996, 388–394.

    Google Scholar 

  • Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, action and interaction. Annals of Botany, 95, 707–735.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., Pasternak, J. J., & Glick, B. R. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR12-2 that overproduce indoleacetic acid. Current Microbiology, 32, 67–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.R. is a recipient of a predoctoral fellowship from the ‘Vlaamse Interuniversitaire Raad (VLIR)’ R.T. acknowledges the receipt of a predoctoral fellowship from the Katholieke Universiteit Leuven. We thank Dr. Bernard Glick for kindly providing us the strain P. putida UW4 and strain UW4/AcdS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseline Remans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remans, R., Croonenborghs, A., Gutierrez, R.T. et al. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119, 341–351 (2007). https://doi.org/10.1007/s10658-007-9154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9154-4

Keywords

Navigation