Advertisement

European Journal of Plant Pathology

, Volume 119, Issue 2, pp 143–158 | Cite as

Detection of Phytophthora nicotianae and P. palmivora in citrus roots using PCR-RFLP in comparison with other methods

  • Kim D. BowmanEmail author
  • Ute Albrecht
  • James H. Graham
  • Diane B. Bright
Full Research Paper

Abstract

Phytophthora nicotianae and P. palmivora are the most important soil-borne pathogens of citrus in Florida. These two species were detected and identified in singly and doubly infected plants using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS) regions of ribosomal DNA. The sensitivity of the PCR-RFLP was analyzed and the usefulness of the method evaluated as an alternative or supplement to serological methods and recovery on semi-selective medium. In a semi-nested PCR with universal primers ITS4 and ITS6, the detection limit was 1 fg of fungal DNA, which made it 1000× more sensitive than a single-step PCR with primers ITS4 and DC6. The sensitivity of detection for P. nicotianae was shown to be ten-fold lower than for P. palmivora, limiting its detection with restriction profiles in plants infected by both fungal species. Phytophthora nicotianae was detected with species-specific primers in all samples inoculated with this species despite the absence of species-specific patterns in RFLP. In contrast, the incidence of detection of P. palmivora in the presence of P. nicotianae was considerably lower using plating and morphological detection methods. Due to its high sensitivity, PCR amplification of ribosomal ITS regions is a valuable tool for detecting and identifying Phytophthora spp. in citrus roots, provided a thorough knowledge of reaction conditions for the target species is established prior to the interpretation of data.

Keywords

ITS regions Phytophthora root rot 

Notes

Acknowledgements

This research was supported in part by the Florida Citrus Production Research Advisory Council, Project No. 025-02I. Mention of a trademark, warranty, proprietary product, or vendor does not imply an approval to the exclusion of other products or vendors that also may be suitable.

References

  1. Albrecht, U., & Bowman, K. D. (2004). Growth comparison of citrus roostocks after artificial infection with Phytophthora. Proceedings of the Florida State Horticultural Society, 117, 156–160.Google Scholar
  2. Böhm, J., Hahn, A., Schubert, R., Bahnweg, G., Adler, N., Nechwatal, J., Oehlmann, R., & Oßwald, W. (1999). Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mossea and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. Journal of Phytopathology, 147, 409–416.CrossRefGoogle Scholar
  3. Bonants, P., Hagenaar-de Weerdt, M., van Gent-Pelzer, M., Lacourt, I., Cooke, D., & Duncan, J. (1997). Detection and identification of Phytophthora fragariae Hickman by the polymerase chain reaction. European Journal of Plant Pathology, 103, 345–355.CrossRefGoogle Scholar
  4. Bonants, P. J. M., Hagenaar-de Weerdt, M., Man in’t Veld, W. A., & Baayen, R. P. (2000). Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum. Phytopathology, 90, 867–874.CrossRefPubMedGoogle Scholar
  5. Bowman, K. D., Shapiro, J. P., & Lapointe, S. L. (2001). Sources of resistance to Diaprepes weevil in subfamily Aurantiodeae, Rutaceae. HortScience, 36, 332–336.Google Scholar
  6. Bowman, K. D., Albano, J. P., & Graham, J. H. (2002). Greenhouse testing of rootstocks for resistance to Phytophthora species in flatwoods soil. Proceedings of the Florida State Horticultural Society, 115, 10–13.Google Scholar
  7. Bowman, K. D., Graham, J. H., & Adair, R. C. (2003). Young tree growth in a flatwoods rootstock trial with Diaprepes weevil and Phytophthora diseases. Proceedings of the Florida State Horticultural Society, 116, 249–251.Google Scholar
  8. Cavalier-Smith, T. A. (1986). The Kingdom Chromista: Origin and systematics. In: F. E. Round & D. J. Chapman (Eds.), Progress on phycological research, (Vol. 4, pp. 309–347). Bristol: Biopress.Google Scholar
  9. Cohen, S., Allasia, V., Venard, P., Notter, S., Vernière, C., & Panabières, F. (2003). Intraspecific variation in Phytophthora citrophthora from citrus trees in eastern Corsica. European Journal of Plant Pathology, 109, 791–805.CrossRefGoogle Scholar
  10. Cooke, D. E. L., & Duncan, J. M. (1997). Phylogenetic analysis of Phytophthora species based on the ITS1 and ITS2 sequences of ribosomal DNA. Mycological Research, 101, 667–677.CrossRefGoogle Scholar
  11. Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology, 30, 17–23.PubMedCrossRefGoogle Scholar
  12. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. American Phytopathological Society Press, St. Paul, Minnesota.Google Scholar
  13. Govers, F. (2001). Misclassification of pest as ‘fungus’ puts vital research on wrong track. Nature, 411, 633.PubMedCrossRefGoogle Scholar
  14. Graham, J. H. (1995). Root regeneration and tolerance of citrus rootstocks to root rot caused by Phytophthora nicotianae. Phytopathology, 85, 11–117.CrossRefGoogle Scholar
  15. Graham, J. H., & Menge, J. A. (1999). Root health: Fungal diseases. In L. W. Timmer & L. W. Duncan (Eds.), Citrus health management (pp. 126–135). St. Paul, Minnesota: American Phytopathological Society Press.Google Scholar
  16. Graham, J. H., Timmer, L. W., Drouillard, D. L., & Peever, T. L. (1998). Characterization of Phytophthora spp., causing outbreaks of citrus brown rot in Florida. Phytopathology, 88, 724–729.CrossRefPubMedGoogle Scholar
  17. Graham, J. H., Bright, D. B., & McCoy, C. W. (2003). Phytophthora-Diaprepes weevil complex: Phytophthora spp. relationships with citrus rootstocks. Plant Disease, 87, 85–90.CrossRefGoogle Scholar
  18. Grimm, G. R., & Alexander, A. F. (1973). Citrus leaf pieces as traps for Phytophthora parasitica from soil slurries. Phytopathology, 63, 540–541.Google Scholar
  19. Grosser, J. W., Graham, J. H., McCoy, C. W., Hoyte, A., Rubio, H. M., Bright, D. B., & Chandler, J. L. (2003). Development of “tetrazyg” rootstocks tolerant of the Diaprepes/Phytophthora complex under greenhouse conditions. Proceedings of the Florida State Horticultural Society, 116, 263–267.Google Scholar
  20. Grote, D., Olmos, A., Kofoet, A., Tuset, J. J., Bertolini, E., & Cambra, M. (2002). Specific and sensitive detection of Phytophthora nicotianae by simple and nested-PCR. European Journal of Plant Pathology, 108, 197–207.CrossRefGoogle Scholar
  21. Ippolito, A., Schena, L., & Nigro, F. (2002). Detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils by nested PCR. European Journal of Plant Pathology, 108, 855–868.CrossRefGoogle Scholar
  22. Ippolito, A., Schena, L., Nigro, F., Ligorio, V. S., & Yaseen, T. (2004). Real-time detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soil. European Journal of Plant Pathology, 110, 833–843.CrossRefGoogle Scholar
  23. Judelson, H. S., & Tooley, P. W. (2000). Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology, 90, 1112–1119.CrossRefPubMedGoogle Scholar
  24. Lacourt, I., & Duncan, J. M. (1997). Specific detection of Phytophthora nicotianae using the polymerase chain reaction and primers based on the DNA sequences of its elicitin gene ParA1. European Journal of Plant Pathology, 103, 73–83.CrossRefGoogle Scholar
  25. Lee, S. B., & Taylor, J. W. (1992). Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Journal of Molecular Evolution, 9, 636–653.Google Scholar
  26. Mchau, G. R. A., & Coffey, M. D. (1994). An integrated study of the morphological and isozyme patterns found within a worldwide collection of Phytophthora citrophthora and a redescription of the species. Mycological Research, 98, 1291–1299.Google Scholar
  27. Miller, S. A. (1996). Detecting propagules of plant pathogenic fungi. In S. H. DeBoer (Ed.), Advances in botanical research, (Vol. 23, pp. 73–102). London: Academic Press.Google Scholar
  28. Miller, S. A., Madden, L. V., & Schmitthenner, A. F. (1997). Distribution of Phytophthora spp. in field soils determined by immunoassays. Phytopathology, 87, 101–107.CrossRefPubMedGoogle Scholar
  29. Mohan, S. B. (1989). Cross-reactivity of antiserum raised against Phytophthora fragariae with other Phytophthora species and its evaluation as a genus-detecting antiserum. Plant Pathology, 38, 352–363.CrossRefGoogle Scholar
  30. Nechwatal, J., & Oßwald, W. (2001). Comparative studies on the fine root status of healthy and declining spruce and beech trees in the bavarian alps and occurrence of Phytophthora and Pythium species. Forest Pathology, 31, 257–273.CrossRefGoogle Scholar
  31. Nechwatal, J., Schlenzig, A., Jung, T., Cooke, D. E. L., Duncan, J. M., & Oßwald, W. (2001). A combination of baiting and PCR techniques for the detection of Phytophthora quercina and P. citricola in soil samples from oak stands. Forest Pathology, 31, 85–97.CrossRefGoogle Scholar
  32. Oudemans, P., & Coffey, M. D. (1991). A revised systematics of twelve papillate Phytophthora species based on isozyme analysis. Mycological Research, 95, 1025–1046.CrossRefGoogle Scholar
  33. Schaad, N. W., & Frederick, R. D. (2002). Real-time PCR and its application for rapid plant disease diagnosis. Canadian Journal of Plant Pathology, 24, 250–258.CrossRefGoogle Scholar
  34. Schubert, R., Bahnweg, G., Nechwatal, J., Jung, T., Cooke, D. E. L., Duncan, J. M., Müller-Starck, G., Langebartels, C., Sandermann, H., & Oßwald, W. (1999). Detection and quantification of Phytophthora species which are associated with root-rot diseases in European deciduous forests by species-specific polymerase chain reaction. European Journal of Forest Pathology, 29, 169–188.CrossRefGoogle Scholar
  35. Timmer, L. W., & Menge, J. A. (1988). Phytophthora-induced diseases. In J. O. Whiteside, S. M. Garnsey & L. W. Timmer (Eds.), Compendium of citrus diseases (pp. 22–24). St. Paul, Minnesota: American Phytopathological Society Press.Google Scholar
  36. Timmer, L. W., Sandler, H. A., Graham, J. H., & Zitko, S. E. (1988). Sampling citrus orchards in Florida to estimate populations of Phytophthora parasitica. Phytopathology, 78, 940–944.Google Scholar
  37. Timmer, L. W., Menge, J. A., Zitko, S. E., Pond, E., Miller, S. A., & Johnson, E. L. V. (1993). Comparison of ELISA techniques and standard isolation methods for Phytophthora detection in citrus orchards in Florida and California. Plant Disease, 77, 791–796.CrossRefGoogle Scholar
  38. Tooley, P. W., & Therrien, C. D. (1987). Cytophotometric determination of the nuclear DNA content of 23 Mexican and 18 non-Mexican isolates of Phytophthora infestans. Experimental Mycology, 11, 19–26.CrossRefGoogle Scholar
  39. Tooley, P. W., Bunyard, B. A., Carras, M. M., & Hatziloukas, E. (1997). Development of PCR primers from internal transcribed spacer region 2 for the detection of Phytophthora species infecting potatoes. Applied Environmental Microbiology, 63, 1467–1475.Google Scholar
  40. Trout, C. L., Ristaino, J. B., Madritch, M., & Wangsomboondee, T. (1997). Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Disease, 81, 1042–1048.CrossRefGoogle Scholar
  41. Tsao, P. H., & Guy, S. O. (1977). Inhibition of Mortierella and Pythium in a Phytophthora-isolation medium containing hymexazol. Phytopathology, 67, 796–801.Google Scholar
  42. Tsao, P. H. (1990). Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected. Bulletin Oepp/Eppo Bulletin, 20, 11–17.Google Scholar
  43. Vandemark, G. J., & Barker, B. M. (2003). Quantifying Phytophthora medicaginis in susceptible and resistant alfalfa with a real-time fluorescent PCR assay. Journal of Phytopathology, 151, 577–583.CrossRefGoogle Scholar
  44. Vettraino, A. M., Natili, G., Anselmi, N., & Vannini, A. (2001). Recovery and pathogenicity of Phytophthora species associated with a resurgence of ink disease in Castanea sativa in Italy. Plant Pathology, 50, 90–96.CrossRefGoogle Scholar
  45. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand J. J. Sninsky & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–321). New York: Academic Press.Google Scholar
  46. Widmer, T. L., Graham, J. H., & Mitchell, D. J. (1998). Histological comparison of fibrous root infection of disease-tolerant and susceptible citrus hosts by Phytophthora nicotianae and P. palmivora. Phytopathology, 88, 389–395.CrossRefPubMedGoogle Scholar
  47. Zheng, F. C., & Ward, E. (1998). Variation within and between Phytophthora species from rubber and citrus trees in China, determined by polymerase chain reaction using RAPDs. Journal of Phytopathology, 146, 103–109.Google Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Kim D. Bowman
    • 1
    Email author
  • Ute Albrecht
    • 1
  • James H. Graham
    • 2
  • Diane B. Bright
    • 2
  1. 1.US Horticultural Research Laboratory, US Department of AgricultureAgricultural Research ServiceFort PierceUSA
  2. 2.Citrus Research and Education CenterUniversity of Florida, Institute of Food and Agricultural SciencesLake AlfredUSA

Personalised recommendations