European Journal of Plant Pathology

, Volume 118, Issue 4, pp 333–348 | Cite as

Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection

  • Chu-Hui Chiang
  • Chun-Yee Lee
  • Ching-Hsien Wang
  • Fuh-Jyh Jan
  • Shih-Shun Lin
  • Tsung-Chi Chen
  • Joseph A. J. Raja
  • Shyi-Dong Yeh
Full Research Paper

Abstract

Papaya ringspot virus (PRSV) HA 5-1, a nitrous acid-induced mild mutant of severe strain HA, widely applied for control of PRSV by cross-protection, was used to study the genetic basis of attenuation. Using infectious clones, a series of recombinants was generated between HA 5-1 and HA and their infectivity was analyzed on the systemic host papaya and the local lesion host Chenopodium quinoa. The recombinants that contained mutations in P1 and HC-Pro genes caused attenuated infection on papaya without conspicuous symptoms, similar to HA 5-1. The recombination and sequence analyses strongly implicated two amino acid changes in the C-terminal region of P1 and two in HC-Pro of HA 5-1 involved in the attenuated infection on papaya. The recombinants that infected C. quinoa plants without local lesions contained the same mutations in the C-terminal region of HC-Pro for attenuated infection on papaya. We conclude that both P1 and HC-Pro bear important pathogenicity determinants for the infection on the systemic host papaya and that the mutations in HC-Pro affecting pathogenicity on papaya are also responsible for the inability to induce hypersensitive reaction on C. quinoa.

Keywords

Attenuated virus Cross-protection In vitro transcription Recombinant virus 

Notes

Acknowledgements

The authors thank Drs. M. J. Chen, S. T. Hsu, and H. T. Hsu for their encouragement and advice. This research was partly supported by the grants NSC 87-2312-B-005-005 and NSC 89-2321-B-005-001 from the National Science Council of the Republic of China on Taiwan.

References

  1. Akira, K., Itaru, O., Kayoko, A., Yutaka, C., Shuu, H., Yoshiko, N. N., Akiko, I., & Yoshio, E. (1999). One amino acid change in cucumber mosaic virus RNA polymerase determines virulent/avirulent phenotypes on cowpea. Phytopathology, 89, 186–1192.Google Scholar
  2. Arazi, T., Slutsky, S. G., Shiboleth, Y. M., Wang, Y., Rubinstein, M., Barak, S., Yang, J., & Gal-On, A. (2001). Engineering zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. Journal of Biotechnology, 87, 67–82.PubMedCrossRefGoogle Scholar
  3. Arbatova, J., Lehto, K., Pehu, E., & Pehu, T. (1998). Localization of the P1 protein of potato Y potyvirus in association with cytoplasmic inclusion bodies and in the cytoplasm of infected cells. Journal of General Virology, 79, 2319–2323.PubMedGoogle Scholar
  4. Atreya, C. D., Atreya, P. L., Thornbury, D. W., & Pirone, T. P. (1992). Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation, and symptom expression in infected tobacco plants. Virology, 191, 106–111.PubMedCrossRefGoogle Scholar
  5. Atreya, C. D., & Pirone, T. P. (1993). Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility. Proceedings of National Academy of Sciences USA, 90, 11919–11923.CrossRefGoogle Scholar
  6. Ballut, L., Drucker, M., Pugniere, M., Cambon, F., Blanc, S., Roquet, F., Candresse, T., Schmid, H. P., Nicolas, P., Gall, O. L., & Badaoui, S. (2005). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology, 86, 2595–2603.PubMedCrossRefGoogle Scholar
  7. Brantley, J. D., & Hunt, A. G. (1993). The N-terminal protein of the polyprotein encoded by the potyvirus tobacco vein mottling virus is an RNA-binding protein. Journal of General Virology, 74, 1157–1162.PubMedGoogle Scholar
  8. Brizard, J. P., Carapito, C., Delalande, F., Dorsselaer, A. V., & Brugidou, C. (2006). Proteome analysis of plant-virus interactome. Molecular and Cellular Proteomics, 5, 2279–2297.PubMedCrossRefGoogle Scholar
  9. Canto, T., Uhrig, J. F., Swanson, M., Wright, K. M., & MacFarlane, S. A. (2006). Translocaiton of Tomato bushy stunt virus P19 protein into the nucleus by ALY proteins compromises its silencing suppressor activity. Journal of Virology, 90, 9064–9072.CrossRefGoogle Scholar
  10. Chiang, C. H., & Yeh, S. D. (1997). Infectivity assays of in vitro and in vivo transcripts of papaya ringspot potyvirus. Botanical Bulletin of Academia Sinica, 38, 153–163.Google Scholar
  11. Chu, M., Desvoyes, B., Turina, M., Noad, R., & Scholthof, H. B. (2000). Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Virology, 266, 79–87.PubMedCrossRefGoogle Scholar
  12. Chu, M., Lopez-Moya, J. J., Llave-Correas, C., & Pirone, T. P. (1997). Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Molecular Plant-Microbe Interactions, 10, 472–480.PubMedCrossRefGoogle Scholar
  13. Fellers, J. P., Tremblay, D., Handest, M. F., & Lommel, S. A. (2002). The Potato virus Y MSNR NIb-replicase is the elicitor of a veinal necrosis-hypersensitive response in root knot nematode resistant tobacco. Molecular Plant Pathology, 3, 145–152.CrossRefGoogle Scholar
  14. Gal-On, A. (2000). A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology, 90, 467–473.CrossRefPubMedGoogle Scholar
  15. Gonsalves, D., & Ishii, M. (1980). Purification and serology of papaya ringspot virus. Phytopathology, 70, 1028–1032.Google Scholar
  16. Jenner, C. E., Tomimura, K., Ohshima, K., Hughes, S. L., & Walsh, J. A. (2002). Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology, 300, 50–59.PubMedCrossRefGoogle Scholar
  17. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., & Walsh, J. A. (2003). The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Molecular Plant-Microbe Interactions, 16, 777–784.PubMedCrossRefGoogle Scholar
  18. Kasschau, K. D., Cronin, S., & Carrington, J. C. (1997). Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology, 228, 251–262.PubMedCrossRefGoogle Scholar
  19. Klein, P. G., Klein, R. R., Rodriguez-Cerezo, E., Hunt, A. G., & Shaw, J. G. (1994). Mutational analysis of the tobacco vein mottling virus genome. Virology, 204, 759–769.PubMedCrossRefGoogle Scholar
  20. Krause-Sakate, R., Redondo, E., Richard-Forget, F., Jadão, A. S., Houvenaghel, M. C., German-Retana, S., Pavan, M. A., Candresse, T., Zerbini, F. M., & Gall, O. L. (2005). Molecular mapping of the viral determinants of systemic wilting induced by a Lettuce mosaic virus (LMV) isolate in some lettuce cultivars. Virus Research, 109, 175–180.PubMedCrossRefGoogle Scholar
  21. Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberte, J. F. (2000). Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlated with virus infectivity. Journal of Virology, 74, 7730–7737.PubMedCrossRefGoogle Scholar
  22. Masuta, C., Nishimura, M., Morishita, H., & Hataya, T. (1999). A single amino acid change in viral genome-associated protein of potato virus Y correlates with resistance breaking in ‘Virgin A mutant’ tobacco. Phytopathology, 89, 118–123.CrossRefPubMedGoogle Scholar
  23. Merits, A., Guo, D., & Saarma, M. (1998). VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. Journal of General Virology, 79, 3123–3127.PubMedGoogle Scholar
  24. Omarov, R. T., Rezende, J. A., & Scholthof, H. B. (2004). Host-specific generation and maintenance of Tomato bushy stunt virus defective interfering RNAs. Molecular Plant-Microbe Interactions, 17, 195–201.PubMedCrossRefGoogle Scholar
  25. Paalme, V., Gammelgård, E., Järvekülg, L., & Valkonen, J. P. T. (2004). In vitro recombinants of two nearly identical potyviral isolates express novel virulence and symptom phenotypes in plants. Journal of General Virology, 85, 739–747.PubMedCrossRefGoogle Scholar
  26. Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas, D., & Bron, P. (2003). Structural characterization of HC-Pro, a plant virus multifunctional protein. Journal of Biological Chemistry, 278, 23753–23761.PubMedCrossRefGoogle Scholar
  27. Purcifull D. E., Edwardson J. R., Hiebert E., & Gonsalves, D. (1984). Papaya ringspot virus. Kew, UK: CMI/AAB Descriptions of Plant Viruses.Google Scholar
  28. Redondo, E., Krause-Sakate, R., Yang, S. J., Lot, H., Le Gall, O., & Candresse, T. (2001). Lettuce mosaic virus pathogenicity determinants in susceptible and tolerant lettuce cultivars map to different regions of the viral genome. Molecular Plant-Microbe Interactions, 14, 804–810.PubMedCrossRefGoogle Scholar
  29. Rodriguez-Cerezo, E., Klein, P. G., & Shaw, J. G. (1991). A determinant of disease symptom severity is located in the 3′-terminal noncoding region of the RNA of a plant virus. Proceedings of National Academy of Sciences USA, 88, 9863–9867.CrossRefGoogle Scholar
  30. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C., & Caranta, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant Journal, 32, 1067–1075.PubMedCrossRefGoogle Scholar
  31. Saenz, P., Cervera, M. T., Dallot, S., Quiot, L., Quiot, J. B., Riechmann, J. L., & Garcia, J. A. (2000). Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3 + 6K(1). Journal of General Virology, 81, 557–566.PubMedGoogle Scholar
  32. Saenz, P., Quiot, L., Quiot, J. B., Candresse, T., & Garcia, J. A. (2001). Pathogenicity determinants in the complex virus population of a Plum pox virus isolate. Molecular Plant-Microbe Interactions, 14, 278–287.PubMedCrossRefGoogle Scholar
  33. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual, 2nd ed. NY: Cold Spring Harbor Laboratory.Google Scholar
  34. Scholthof, H. B., Scholthof, K., Kikkert, M., & Jackson, A. O. (1995). Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virology, 213, 425–438.PubMedCrossRefGoogle Scholar
  35. Simon-Buela, L., Guo, H. S., & Garcia, J. A. (1997). Long sequences in the 5′ noncoding region of plum pox virus are not necessary for viral infectivity but contribute to viral competitiveness and pathogenesis. Virology, 233, 157–162.PubMedCrossRefGoogle Scholar
  36. Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85, 2087–2098.PubMedCrossRefGoogle Scholar
  37. Tribodet, M., Glais, L., Kerlan, C., & Jacquot, E. (2005). Characterization of Potato virus Y (PVY) molecular determinants involved in the vein necrosis symptom induced by PVYN isolates in infected Nicotiana tabacum cv. Xanthi. Journal of General Virology, 86, 2101–2105.PubMedCrossRefGoogle Scholar
  38. Ullah, Z., & Grumet, R. (2002). Localization of Zucchini yellow mosaic virus to the veinal regions and role of viral coat protein in veinal chlorosis conditioned by the zym potyvirus resistance locus in cucumber. Physiological and Molecular Plant Pathology, 60, 79–89.CrossRefGoogle Scholar
  39. Urcuqui-Inchima, S., Haenni, A. L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74, 157–175.PubMedCrossRefGoogle Scholar
  40. Verchot, J., & Carrington, J. C. (1995). Debilitation of plant potyvirus infectivity by P1 proteinase-inactivating mutations and restoration by second-site modifications. Journal of Virology, 69, 1582–1590.PubMedGoogle Scholar
  41. Verchot, J., Herndon, K. L., & Carrington, J. C. (1992). Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190, 298–306.PubMedCrossRefGoogle Scholar
  42. Wang, C. H., & Yeh, S. D. (1992). Nucleotide sequence comparison of the 3′-terminal regions of severe, mild, and non-papaya infecting strains of papaya ringspot virus. Archives of Virology, 127, 345–354.PubMedCrossRefGoogle Scholar
  43. Wang, H. L., Wang, C. C., Chiu, R. J., & Sun, M. H. (1978). Preliminary study on papaya ringspot virus in Taiwan. Plant Protection Bulletin, 20, 133–140.Google Scholar
  44. Yeh, S. D., & Gonsalves, D. (1984). Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology, 74, 1081–1085.CrossRefGoogle Scholar
  45. Yeh, S. D., Gonsalves, D., & Provvidenti, R. (1984). Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology, 74, 1081–1085.Google Scholar
  46. Yeh, S. D., Gonsalves, D., Wang, H. L., Nanba, R., & Chiu, R. J. (1988). Control of papaya ringspot virus by cross protection. Plant Disease, 72, 375–380.CrossRefGoogle Scholar
  47. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., & Bau, H. J. (1992). Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. Journal of General Virology, 73, 2531–2541.PubMedCrossRefGoogle Scholar
  48. Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., Naito, S., & Ishikawa, M. (2004). The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. Journal of Virology, 78, 6102–6111.PubMedCrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  • Chu-Hui Chiang
    • 1
  • Chun-Yee Lee
    • 2
  • Ching-Hsien Wang
    • 2
  • Fuh-Jyh Jan
    • 2
  • Shih-Shun Lin
    • 2
  • Tsung-Chi Chen
    • 2
  • Joseph A. J. Raja
    • 2
  • Shyi-Dong Yeh
    • 2
  1. 1.Department of Molecular BiotechnologyDa Yeh UniversityChang HwaTaiwan
  2. 2.Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations