European Journal of Plant Pathology

, Volume 119, Issue 1, pp 59–76 | Cite as

Comparison of the epidemiology of ascochyta blights on grain legumes

  • Bernard TivoliEmail author
  • Sabine Banniza
Full Research Paper


Asochyta blights of grain legumes are caused by fungal pathogens in the genus Ascochyta. Different species infect the different legume species, and in pea three species including Phoma medicaginis var. pinodella have been implicated in ascochyta blight. The impact of the diseases varies between crops, countries, seasons and cropping systems, and yield loss data collected under well-defined conditions is scarce. However, ascochyta blights are considered major diseases in many areas where legumes are grown. Symptoms appear on all aerial parts of the plant, and lesions are similar for most of the species, except for M. pinodes and P. medicaginis var. pinodella. Infected seed, stubble and/or air-borne ascospores are major sources of primary inoculum. Their importance varies between species and also between regions. All Ascochyta spp. produce rain-splashed conidia during the cropping season which are responsible for the spread of the disease within the crop canopy. Only in pea are ascospores involved in secondary disease spread. Limited data suggests that Ascochyta spp. may be hemibiotrophs; however, toxins characteristic for necrotrophs have been isolated from some of the species. Modelling of ascochyta blights is still in the developmental stage and implementation of such models for disease forecasting is the exception.


Pea Faba bean Chickpea Lentil Ascochyta Mycosphaerella pinodes Phoma medicaginis Didymella Life-cycle 


  1. Agrios, G. N. (2004). Plant pathology (5th Ed.). Elsevier Academic Press.Google Scholar
  2. Ahmed, S., & Morrall, R. A. A. (1996). Field reactions of lentil lines cultivars to isolates of Ascochyta fabae f. sp. lentis. Canadian Journal of Plant Pathology, 18, 362–369.CrossRefGoogle Scholar
  3. Bailey, J. A. (1969). Phytoalexin production by leaves of Pisum sativum in relation to senescence. Annals of Applied Biology, 64, 315–324.Google Scholar
  4. Banniza, S., Hashemi, P., Warkentin, T. D., Vandenberg, A., & Davis, A. R. (2005). The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum). Canadian Journal of Botany, 83, 954–967.CrossRefGoogle Scholar
  5. Barve, M. P., Arie, T., Slimath, S. S., Muehlbauer, F. J., & Peever, T. L. (2003). Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genetics and Biology, 39, 151–167.PubMedCrossRefGoogle Scholar
  6. Barz, W., & Welle, R. (1992). Biosynthesis and metabolism of isoflavones and pterocarpan phytoalexins in chickpea, soybean and phytopathogenic fungi. In: H. A. Stafford, & R. K. Abrahim (Eds.), Phenolic metabolism in plants (pp. 139–164). New York: Plenum Press.Google Scholar
  7. Béasse, C., Ney, B., & Tivoli, B. (2000). A simple model of pea growth affected by Mycosphaerella pinodes. Plant Pathology, 49, 187–200.Google Scholar
  8. Beed, F. D., Strange, R. N., Onfroy, C., & Tivoli, B. (1994). Virulence for faba bean and production of ascochytine by Ascochyta fabae. Plant Pathology, 43, 987–997.CrossRefGoogle Scholar
  9. Bond, A., & Pope, M. (1980). Ascochyta fabae on winter beans (Vicia faba): Pathogen spread and variation in host resistance. Plant Pathology, 29, 59–65.CrossRefGoogle Scholar
  10. Bowen, J. K., Lewis, B. G., & Matthews, P. (1997). Discovery of the teleomorph of Phoma medicaginis var. pinodella in culture. Mycological Research, 101, 80–84.CrossRefGoogle Scholar
  11. Bretag, T. W. (1991). Epidemiology and control of ascochyta blight of field peas, PhD Thesis. La Trobe University, Australia.Google Scholar
  12. Bretag, T. W., Price, T. V., & Keane, P. J. (1995a). Importance of seed-borne inoculum in the etiology of the ascochyta blight complex of field peas (Pisum sativum L.) grown in Victoria. Australian Journal of Experimental Agriculture, 35, 525–530.CrossRefGoogle Scholar
  13. Bretag, T. W., Keane, P. J., & Price, T. V. (1995b). Effect of ascochyta blight on the grain yield of field peas (Pisum sativum L.) grown in southern Australia. Australian Journal of Experimental Agriculture, 35, 531–536.CrossRefGoogle Scholar
  14. Bretag, T. W., Keane, P. J., & Price, T. V. (2000). Effect of sowing date on the severity of ascochyta blight in field peas (Pisum sativum L.) grown in Wimmera region of Victoria. Australian Journal of Experimental Agriculture, 40, 1113–1119.CrossRefGoogle Scholar
  15. Bretag, T. W., Keane, P. J., & Price, T. V. (2006). The epidemiology of ascochyta blight in field peas: A review. Australian Journal of Agricultural Research, 57, 883–902.CrossRefGoogle Scholar
  16. Brewer, D., & MacNeill, B. H. (1953). Preliminary studies in Ascochyta pisi Lib. Canadian Journal of Botany, 31, 739–744.Google Scholar
  17. Chongo, G., & Gossen, B. D. (2001). Effect of plant age on resistance of Ascochyta rabiei in chickpea. Canadian Journal of Plant Pathology, 23, 358–363.CrossRefGoogle Scholar
  18. Chongo, G., Gossen, B. D., Buchwaldt, L., Adhikari, T., & Rimmer, S. R. (2004). Genetic diversity of Ascochyta rabiei in Canada. Plant Disease, 88, 4–10.CrossRefGoogle Scholar
  19. Clulow, S. A., Lewis, B. G., Parker, M. L., & Matthews, P. (1991). Infection of pea epicotyls by Mycosphaerella pinodes. Mycological Research, 95, 817–820.Google Scholar
  20. Clulow, S. A., Lewis, B. G., & Matthews, P. (1992). Expression of resistance to Mycosphaerella pinodes in Pisum sativum. Plant Pathology, 41, 362–369.CrossRefGoogle Scholar
  21. Corbière, R, Gelie, B., Molinero, V., Spire, D., & Agarwal, V. K. (1994). Investigations on seedborne nature of Mycosphaerella pinodes in pea seeds. Seed Research, 22, 26–30.Google Scholar
  22. Daniel, S., Tiemann, K., Wittkampf, U., Bless, W., Hinderer, W., & Barz, W. (1990). Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei. I- Investigations of enzyme activities involved in isoflavone and pterocarpan phytoalexin biosynthesis. Planta, 182, 270–278.Google Scholar
  23. Dey, S. K., & Singh, G. (1994). Seedborne infection of Ascochyta rabiei in chickpea and its transmission to aerial plant parts. Phytoparasitica, 22, 31–37.Google Scholar
  24. Galloway, J., MacLeod, W. J., & Lindbeck, K. D. (2004). Formation of Didymella lentis, the teleomorph of Ascochyta lentis, on lentil stubble in the field in Victoria and Western Australia. Australasian Plant Pathology, 33, 449–450.CrossRefGoogle Scholar
  25. Gamliel-Atinsky, E., Shienberg, D., Vintal, H., Nitzni, Y., & Dinoor, A. (2005). Production of Didymella rabiei pseudothecia and dispersal of ascospores in a Mediterranean climate. Phytopathology, 95, 1279–1286.CrossRefPubMedGoogle Scholar
  26. Gaunt, R. E. (1983). Shoot diseases caused by fungal pathogens. In P. D. Hebblethwaite (Ed.), The Faba Bean (pp. 463–492). London: Butterworths.Google Scholar
  27. Gaunt, R. E., & Liew, R. S. S. (1981). Control strategies for Ascochyta fabae in New Zealand field and broad bean crops. Seed Science Technology, 9, 707–715.Google Scholar
  28. Gossen, B. D., & Morrall, R. A. A. (1986). Transmission of Ascochyta lentis from infected lentil seed and plant residue. Canadian Journal of Plant Pathology, 8, 28–32.CrossRefGoogle Scholar
  29. Halila, H., Dahmane, A. B. K., & Seklani, H., (1990). The role of legumes in the farming systems of the Mediterranean areas. In: A. E. Osman et al. (Eds.), (pp. 115–129). ICARDA.Google Scholar
  30. Hargreaves, J. A., Mansfield, J. W., & Rossal, S. (1977). Changes of phytoalexin concentrations in tissues of the broad bean plant (Vicia faba L.) following inoculation with species of Botrytis. Physiological Plant Pathology, 11, 227–242.Google Scholar
  31. Hare, W. W., & Walker, J. C. (1944). Ascochyta diseases of canning pea. Wisconsin Research Bulletin, 150, 1–31.Google Scholar
  32. Heath, M. C., & Wood, R. K. S. (1969). Leaf spots induced by Ascochyta pisi and Mycosphaerella pinodes. Annals of Botany, 33, 657–670.Google Scholar
  33. Heath, M. C., & Wood, R. K. S. (1971a). Role of cell-wall-degrading enzymes in the development of leaf spots caused by Ascochyta pisi and Mycosphaerella pinodes. Annals of Botany, 35, 451–474.Google Scholar
  34. Heath, M. C., & Wood, R. K. S. (1971b). Role of inhibitors of fungal growth in the limitation of leaf spots caused by Ascochyta pisi and Mycosphaerella pinodes. Annals of Botany NS, 35, 475–491.Google Scholar
  35. Höhl, B., Weidemann, C., Holh, U., & Barz, W. (1991). Isolation of solanopyrones A, B and C from culture filtrates and spore germination fluids of Ascochyta rabiei and aspects of phytotoxin action. Journal of Phytopathology, 132, 193–206.Google Scholar
  36. Jayakakumar, P., Gossen, B. D., Gan, Y. T., Warkentin, T. D., & Banniza, S. (2005). Ascochyta blight of chickpea: Infection and host resistance mechanisms. Canadian Journal of Plant Pathology, 27, 499–509.CrossRefGoogle Scholar
  37. Jellis, G. J., & Punithalingam, P. (1991). Discovery of Didymella fabae sp. nov., the teleomorph of Ascochyta fabae, on faba bean straw. Plant Pathology, 40, 150–157.CrossRefGoogle Scholar
  38. Jellis, G. J., Lockwood, G., & Aubury, R. G. (1985). Phenotypic influences on the incidence of infection by Ascochyta fabae in spring varieties of faba bean (Vicia faba). Plant Pathology, 34, 347–352.CrossRefGoogle Scholar
  39. Jones, L. K. (1927). Studies of the nature and control of blight, leaf and pod spot and footrot of peas caused by species of Ascochyta. New York State Agricultural Experimental Station Bulletin, 547, 1–45.Google Scholar
  40. Kaiser, W. J. (1973). Factors affecting growth, sporulation, pathogenicity, and survival of Ascochyta rabiei. Mycologia, 65, 444–457.PubMedCrossRefGoogle Scholar
  41. Kaiser, W. J. (1997). Inter- and intranational spread of ascochyta pathogens of chickpea, faba bean and lentil. Canadian Journal of Plant Pathology, 19, 215–224.CrossRefGoogle Scholar
  42. Kaiser, W. J., & Hellier, B. C. (1993). Didymella sp. , the teleomorph of Ascochyta lentis on lentil straw. Phytopathology, 83, 692 (Abstract).Google Scholar
  43. Kaiser, W. J., & Hannan, R. M. (1986). Incidence of seedborne Ascochyta lentis in lentil germ plasm. Phytopathology, 76, 355–360.Google Scholar
  44. Kaiser, W. J., Okhovat, M., & Mossahebi, G. H. (1973). Effect of seed-treatment fungicides on control of Ascochyta rabiei in chickpea seed infected with the pathogen. Disease Reporter, 57, 742–746.Google Scholar
  45. Kaiser, W. J., Wang, B. C., & Rogers, J. D. (1997). Ascochyta fabae and A. lentis: Host specificity, teleomorphs (Didymella), hybrid analysis, and taxonomic status. Plant Disease, 81, 809–816.CrossRefGoogle Scholar
  46. Kaur, S. (1995). Phytotoxicity of solanapyrons produced by the fungus Ascochyta rabiei and their possible role in blight of chickpea (Cicer arietinum). Plant Science, 109, 23–29.CrossRefGoogle Scholar
  47. Kelley, T. G., Parthasarathy Rao, P., & Grisko-Kelley, H. (1997). The pulse economy in the mid-1990s: A review of global and regional developments. In: R. Knight (Ed.), Proceedings IFLRC-III: Linking research and marketing opportunities for the 21st century (pp. 1–29). Dordrecht: Kluwer Academic Publishers.Google Scholar
  48. Le May, C., Schoeny, A., Tivoli, B., & Ney, B. (2005). Improvement and validation of a pea crop growth model to simulate the growth of cultivars infected with ascochyta blight (Mycosphaerella pinodes). European Journal of Plant Pathology, 112, 1–12.CrossRefGoogle Scholar
  49. Lockwood, G., Jellis, J. G., & Aubury, R. G. (1985). Genotypic influences on the incidence of infection by Ascochyta fabae in winter-hardy faba beans (Vicia faba). Plant Pathology, 34, 341–346.CrossRefGoogle Scholar
  50. Marcinkowska, J., Klos, B., & Shcherbakova, A. (1991). Ascochytine production by fungi responsible for Ascochyta diseases of pea. Journal of Phytopathology, 131, 253–258.Google Scholar
  51. Maude, R. B. (1966). Pea seed infection by Mycosphaerella pinodes and Ascochyta pisi and its control by seed soaks in thiram and captan suspension. Annals of Applied Biology, 57, 193–200.Google Scholar
  52. Maurin, N., & Tivoli, B. (1992). Variation in the resistance of Vicia faba to Ascochyta fabae in relation to disease development in field trials. Plant Pathology, 41, 737–744.CrossRefGoogle Scholar
  53. Maurin, N., Gourret, J. P., & Tivoli, B. (1993). Histopathology of the interaction between Ascochyta fabae and Vicia faba: Comparison of susceptible and resistant reactions. Agronomie, 13, 921–927.Google Scholar
  54. Michail, S. H., Farhan, M. A., & Husain, S. S. (1983). Sources of broad bean infection by Ascochyta fabae in Ninevah province of Iraq. Seed Science Technology, 11, 393–402.Google Scholar
  55. Milgroom, M. G., & Peever, T. L. (2003). Population biology of plant pathogens: The synthesis of plant disease epidemiology and population genetics. Plant Disease, 87, 608–617.CrossRefGoogle Scholar
  56. Morrall, R. A. A., & Beauchamp, C. J. (1988). Detection of Ascochyta fabae f.sp. lentis in lentil seed. Seed Science and Technology, 16, 383–390.Google Scholar
  57. Morrall, R. A. A. (1997). Evolution of lentil diseases over 25 years in Western Canada. Canadian Journal of Plant Pathology, 19, 197–207.CrossRefGoogle Scholar
  58. Moussart, A., Tivoli, B., Lemarchand, E., Deneufbourg, F., Roi, S., & Sicard, G. (1998). Role of seed infection by the ascochyta blight pathogen of dried pea (Mycosphaerella pinodes) in seedling emergence, early disease development and transmission of the disease to aerial plant parts. European Journal of Plant Pathology, 104, 93–102.CrossRefGoogle Scholar
  59. Navas-Cortes, J. A., Trapero-Casas, A. & Jimenez-Diaz, R. M. (1995). Survival of Didymella rabiei in chickpea straw debris in Spain. Plant Pathology, 44, 332–339.CrossRefGoogle Scholar
  60. Navas-Cortes, J. A., Trapero-Casas, A., Jimenez-Diaz, R. M. (1998). Influence of relative humidity and temperature on development of Didymella rabiei on chickpea debris. Plant Pathology, 47, 57–66.CrossRefGoogle Scholar
  61. Nene, Y. L. (1981). A review of ascochyta blight of chickpea (Cicer arietinum L.). In: Saxena, M. C., & Singh, K. B. (Eds.), Proceedings of the Workshop on ascochyta blight and winter sowing of chickpea, ICARDA, 4–7 May 1981, Aleppo, Syria. Kluwer Academic Publishers Group: The Hague, Boston, Lancaster.Google Scholar
  62. Onfroy, C., Tivoli, B., Corbière R., Bouznad, Z. (1999). Cultural, molecular and pathogenic variability of Mycosphaerella pinodes and Phoma medicaginis var. pinodella isolates from dried pea (Pisum sativum) in France. Plant Pathology, 48, 218–229.CrossRefGoogle Scholar
  63. Pande, S., Siddique, K. H. M., Kishore, G. K., Bayaa, B., Gaur, P. M., Gowda, C. L. L., Bretag, R. W., & Crouch, J. H. (2005). Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogenicity, and disease management. Australian Journal of Agricultural Research, 56, 317–332.CrossRefGoogle Scholar
  64. Peck, D. M., McDonald, G. K., & Davidson, J. A. (2001). Blackspot survival in soil and stubble and aerial dissemination through the Season. In: Proceedings of the 10th Australian Agronomy Conference, January 2001, Hobart, Australia.Google Scholar
  65. Pedersen, E. A., Bedi, S., & Morrall, R. A. A. (1993). Gradient of ascochyta blight in Saskatchewan lentil crops. Plant Disease, 77, 143–149.CrossRefGoogle Scholar
  66. Pedersen, E. A., & Morrall, R. A. A. (1994). Effects of cultivar, leaf wetness duration, temperature, and growth stage on infection and development of ascochyta blight on lentil. Phytopathology, 84, 1024–1030.CrossRefGoogle Scholar
  67. Pedersen, E. A., & Morrall, R. A. A. (1995). Effects of wind-speed and wind direction on horizontal spread of ascochyta blight on lentil. Canadian Journal of Plant Pathology, 17, 223–232.CrossRefGoogle Scholar
  68. Peever, T. L., Salimath, S. S., Su, G., Kaiser, W. J., & Muehlbauer, F. J. (2004). Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Molecular Ecology, 13, 291–309.PubMedCrossRefGoogle Scholar
  69. Porta-Puglia, A. (1990). Status of Ascochyta rabiei of chickpea in the Mediterranean basin. Options Méditerranéennes, Série seminaries, 9, 51–54.Google Scholar
  70. Prioul, S., Onfroy, C., Tivoli, B., & Baranger, A. (2003) Controlled environment assessment of partial resistance to Mycosphaerella pinodes on pea (Pisum sativum L.) seedlings. Euphytica, 131, 121–130.CrossRefGoogle Scholar
  71. Roger, C., & Tivoli, B. (1996a). Effect of culture medium, light and temperature on sexual and asexual reproduction of four strains of Mycosphaerella pinodes. Mycological Research, 100, 304–306.Google Scholar
  72. Roger, C., & Tivoli, B. (1996b). Spatio-temporal development of pycnidia and pseudothecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathology, 45, 518–528.CrossRefGoogle Scholar
  73. Roger, C., Tivoli, B., & Huber, L. (1999a). Effects of temperature and moisture on disease and fruit body development of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathology, 48, 1–9.CrossRefGoogle Scholar
  74. Roger, C., Tivoli, B., & Huber, L. (1999b). Effects of interrupted wet periods and different temperatures on the development of ascochyta blight caused by Mycosphaerella pinodes on pea (Pisum sativum) seedlings. Plant Pathology, 48, 10–18.CrossRefGoogle Scholar
  75. Salam, M. U., Galloway, J., Payne, P., MacLeod, W. J., & Diggle, A. J. (2006). Field pea blackspot disease in 2005: Predicting versus reality. In 2006 Lupin and pulses updates. Agribusiness crop updates 2006. (pp. 91–93)., Department of Agriculture, Western Australia, South Perth. Australia.Google Scholar
  76. Shiraishi, T., Yamada, T., Saitoh, K., Kato, T., Toyoda, K., Yoshioka, H., Kim, H. M., Ichinose, Y., Tahara, M., & Oku, H. (1994). Suppressors: determinants of specificity produced by plant pathogens. Plant Cell Physiology, 35, 1107–1119Google Scholar
  77. Shtienberg, D., Gamliel-Atinsky, E., Retig, B. S., Brener, A., & Dinoor, A. (2005). Significance of preventing primary infection by Didymella rabiei and development of a model to estimate the maturity of pseudothecia. Plant Disease, 89, 1027–1034.CrossRefGoogle Scholar
  78. Singh, K. B., & Reddy, M. V. (1993). Susceptibility of the chickpea plant to ascochyta blight at different growth stages of crop growth. Phytopathology Mediterranean, 32, 153–155.Google Scholar
  79. Skolko, A. J., Groves, J. W., & Wallen, V. R. (1954). Ascochyta diseases of peas in Canada with special reference to seed transmission. Candian Journal of Agricultural Science, 34, 417–428.Google Scholar
  80. Tivoli, B., Béasse C, Lemarchand, E., & Masson, E. (1996). Effect of ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum) plants under field conditions. Annals of Applied Biology, 129, 207–216.CrossRefGoogle Scholar
  81. Toyoda, K., Miki, K., Ichinose, Y., Yamada, T., & Shiraishi, T. (1995). Plant lectins induce the production of a phytoalexin in Pisum sativum. Plant Cell Physiology, 36, 799–807.Google Scholar
  82. Trapero-Casas, A., & Kaiser, W. A. (1992a). Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathology, 82, 1261–1266.Google Scholar
  83. Trapero-Casas, A., & Kaiser, W. A. (1992b). Influence of temperature, wetness period, plant age, and inoculum concentration on infection and development of ascochyta blight of chickpea. Phytopathology, 82, 589–596.Google Scholar
  84. Trapero-Casas, A., Navas-Cortes, J. A., & Jimenez-Diaz, R. M. (1996). Airborne ascospores of Didymella rabiei as a major primary inoculum for ascochyta blight epidemics in chickpea crops in southern Spain. European Journal of Plant Pathology, 102, 237–245.CrossRefGoogle Scholar
  85. Wallen, V. R. (1965). Field evaluation and the importance of the Ascochyta complex on peas. Canadian Journal of Plant Science, 45, 27–33.CrossRefGoogle Scholar
  86. Wallen, V. R., & Jeun, J. (1968). Factors limiting the survival of Ascochyta spp. of pea in soil. Canadian Journal of Botany, 46, 1279–1286.Google Scholar
  87. Wallen, V. R., & Galway, D. A. (1977). Studies on the biology and control of Ascochyta fabae on faba bean. Canadian Plant Disease Survey, 57, 31–35.Google Scholar
  88. Wallen, V. R., Wong, S. I., & Jeun, J. (1967). Isolation, incidence and virulence of Ascochyta spp. of peas from the soil. Canadian Journal of Botany, 45, 2243–2247.CrossRefGoogle Scholar
  89. Weigand, F., Köster, J., Weltzien, H. C., & Barz, W. (1986). Accumulation of phytoalexins and isoflavone glucosides in a resistant and a susceptible cultivar of Cicer arietinum during infection with Ascochyta rabiei. Journal of Phytopathology, 115, 214–221.Google Scholar
  90. Weltzien, H. C., & Kaack, H. J. (1984). Epidemiological aspects of chickpea ascochyta blight. In: Saxena, M. C., & Singh, K. B. (Eds.), Proceedings of the Workshop on ascochyta blight and winter sowing of chickpea, ICARDA, 4–7 May 1981, Aleppo, Syria. Kluwer Academic Publishers Group: The Hague, Boston, Lancaster.Google Scholar
  91. Wilson, A. D., & Kaiser, W. J. (1995). Cytology and genetics of sexual incompatibility in Didymella rabiei. Mycologia, 87, 795–804.CrossRefGoogle Scholar
  92. Xue, A. G., Warkentin, T. D., & Kenaschuk, E. O. (1997). Effect of timings of inoculation with Mycosphaerella pinodes on yield and seed infection of field pea. Canadian Journal of Plant Science, 77, 685–689.Google Scholar
  93. Zhang, J. X., Fernando, W. G. D., & Xue, A. G. (2004). Temporal and spatial dynamics of mycosphaerella blight [Mycosphaerella pinodes] in field pea. Canadian Journal of Plant Pathology, 26, 522–532.CrossRefGoogle Scholar

Copyright information

© KNPV 2007

Authors and Affiliations

  1. 1.UMR INRA/Agrocampus Rennes, “Biologie des Organismes et des Populations appliquée à la Protection des Plantes” (BiO3P)Le Rheu CedexFrance
  2. 2.Crop Development CentreUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations