Skip to main content

Advertisement

Log in

Advances in molecular phytodiagnostics – new solutions for old problems

  • Major review
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

An Erratum to this article was published on 23 December 2006

Abstract

In the last decade, developments in molecular (nucleic acid-based) diagnostic methods have made significant improvements in the detection of plant pathogens. By using methods such as the polymerase chain reaction (PCR), the range of targets that can now be reliably diagnosed has grown to the extent that there are now extremely few, known pathogens that cannot be identified accurately by using laboratory-based diagnostics. However, while the detection of pathogens in individual, infected samples is becoming simpler, there are still many scenarios that present a major challenge to diagnosticians and plant pathologists. Amongst these are the detection of pathogens in soil or viruses in their vectors, high throughput testing and the development of generic methods, that allow samples to be simultaneously screened for large numbers of pathogens. Another major challenge is to develop robust technologies that avoid the reliance on well-equipped central laboratories and making reliable diagnostics available to pathologists in the field or in less-developed countries. In recent years, much of the research carried out on phytodiagnostics has focussed in these areas and as a result many novel, routine diagnostic tests are becoming available. This has been possible due to the introduction of new molecular technologies such real-time PCR and microarrays. These advances have been complemented by the development of new nucleic acid extraction methods, increased automation, reliable internal controls, assay multiplexing and generic amplification methods. With developments in new hardware, field-portable real-time PCR is now also a reality and offers the prospect of ultra-rapid, on-site molecular diagnostics for the first time. In this paper, the development and implementation of new diagnostic methods based upon novel molecular techniques is presented, with specific examples given to demonstrate how these new methods can be used to overcome some long-standing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barker I, Hims M, Boonham N, Fisher T, Elmore J, Mumford RA (2005) Latest developments in diagnostics for potato diseases. In: Champion G, Dale MFB, Jaggard K, Parker WE, Pickup J, Stevens M (eds) Protection and production of sugar beet and potatoes. Aspects of Applied Biology No. 76 (pp. 147–150): Association of Applied Biologists, Wellesbourne, UK

  • Bates JA, Taylor EJA (2001) Scorpions ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres Molecular Plant Pathology 2:275–280

    CAS  PubMed  Google Scholar 

  • Bates JA, Taylor EJA, Kenyon DM, Thomas JE (2001) The application of real-time PCR to the identification, detection and quantification of Pyrenophora species in the barley seed. Molecular Plant Pathology 2:49–57

    CAS  PubMed  Google Scholar 

  • Belanger SD, Boissinot M, Menard C, Picard FJ, Bergeron MG (2002) Rapid detection of Shiga toxin-producing bacteria in feces by multiplex PCR with molecular beacons on the smart cycler. Journal of Clinical Microbiology 40:1436–1440

    PubMed  CAS  Google Scholar 

  • Belgrader P, Benett W, Hadley D, Long G, Mariella R, Milanovich F, Nasarabadi S, Nelson W, Richards J, Stratton P (1998a) Rapid pathogen detection using a microchip PCR array instrument. Clinical Chemistry 44:2191–2194

    CAS  Google Scholar 

  • Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R, Milanovich F (1999a) PCR detection of bacteria in seven minutes. Science 284:449–450

    CAS  Google Scholar 

  • Belgrader P, Hansford D, Kovacs GTA, Venkateswaran K, Mariella R, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999b) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Analytical Chemistry 71:4232–4236

    CAS  Google Scholar 

  • Belgrader P, Smith JK, Weedn VW, Northrup MA (1998b) Rapid PCR for identity testing using a battery-powered miniature thermal cycler. Journal of Forensic Sciences 43:315–319

    CAS  Google Scholar 

  • Bentley HA, Belloni DR, Tsongalis GJ (2005) Parameters involved in the conversion of real-time PCR assays from the ABI Prism 7700 to the Cepheid SmartCycler II. Clinical Biochemistry 38:183–186

    PubMed  CAS  Google Scholar 

  • Bentsink L, Leone GOM, van Beckhoven JRCM, van Schijndel HB, van Gemen B, van der Wolf JM (2002) Amplification of RNA by NASBA allows direct detection of viable cells of Ralstonia solanacearum in potato. Journal of Applied Microbiology 93:647–655

    PubMed  CAS  Google Scholar 

  • Bertolini E, Olmos A, Martinez MC, Gorris MT, Cambra M (2001) Single-step multiplex RT-PCR for simultaneous and colourimetric detection of six RNA viruses in olive trees. Journal of Virological Methods 96:33–41

    PubMed  CAS  Google Scholar 

  • Bianco PA, Casati P, Marziliano N (2004) Detection of phytoplasmas associated with grapevine flavescence Doree disease using real-time PCR. Journal of Plant Pathology 86:257–261

    CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environmental Microbiology 5:566–582

    PubMed  CAS  Google Scholar 

  • Bohm J, Hahn A, Schubert R, Bahnweg G, Adler N, Nechwatal J, Oehlmann R, Osswald W (1999) Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. Journal of Phytopathology 147:409–416

    CAS  Google Scholar 

  • Bonants PJM, van Gent-Pelzer MPE, Hooftman R, Cooke DEL, Guy DC, Duncan JM (2004) A combination of baiting and different PCR formats, including measurement of real-time quantitative fluorescence, for the detection of Phytophthora fragariae in strawberry plants. European Journal of Plant Pathology 110:689–702

    CAS  Google Scholar 

  • Boonham N, Perez LG, Mendez MS, Peralta EL, Blockley A, Walsh K, Barker I, Mumford RA (2004) Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. Journal of Virological Methods 116:139–146

    PubMed  CAS  Google Scholar 

  • Boonham N, Smith P, Walsh K, Tame J, Morris J, Spence N, Bennison J, Barker I (2002) The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). Journal of Virological Methods 101:37–48

    PubMed  CAS  Google Scholar 

  • Boonham N, Walsh K, Smith P, Madagan K, Graham I, Barker I (2003) Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. Journal of Virological Methods 108:181–187

    PubMed  CAS  Google Scholar 

  • Bos L (1999) Disease diagnosis and routine virus detection. In: Bos L (ed) Plant Viruses, Unique and Intriguing Pathogens. Backhuys Publishers, Leiden, The Netherlands pp 193–216

    Google Scholar 

  • Bystricka D, Lenz O, Mraz I, Dedic P, Sip M. (2003) DNA microarray: parallel detection of potato viruses. Acta Virologica 47:41–44

    PubMed  CAS  Google Scholar 

  • Bystricka D, Lenz O, Mraz I, Piherova L, Kmoch S, Sip M (2005) Oligonucleotide-based microarray: A new improvement in microarray detection of plant viruses. Journal of Virological Methods 128:176–182

    PubMed  CAS  Google Scholar 

  • Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Critical Reviews in Microbiology 31:91–99

    PubMed  CAS  Google Scholar 

  • Christensen DR, Hartman LJ, Loveless BM, Frye MS, Shipley MA, Bridge DL, Richards MJ, Kaplan RS, Garrison J, Baldwin CD, Kulesh DA, Norwood DA (2006) Detection of biological threat agents by real-time PCR: Comparison of assay performance on the RAPID, the LightCycler, and the smart cycler platforms. Clinical Chemistry 52:141–145

    PubMed  CAS  Google Scholar 

  • Cullen DW, Lees AK, Toth IK, Duncan JM (2001) Conventional PCR and quantitative real-time PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology 107:387–398

    CAS  Google Scholar 

  • Cullen DW, Lees AK, Toth IK, Duncan JM (2002) Detection of Colleotrichum coccodes from soil and potato tubers by conventional PCR and quantitative real-time PCR. Plant Pathology 51:281–292

    CAS  Google Scholar 

  • Danks C, Barker I (2000) On-site detection of plant pathogens using lateral-flow devices. OEPP/EPPO Bulletin 30:421–426

    Google Scholar 

  • Deyong Z, Willingmann P, Heinze C, Adam G, Pfunder M, Frey B, Frey JE (2005) Differentiation of cucumber mosaic virus isolates by hybridization to oligonucleotides in a microarray format. Journal of Virological Methods 123:101–108

    PubMed  CAS  Google Scholar 

  • Dodds JA, Morris TJ, Jordan RL (1984) Plant viral double-stranded RNA. Annual Review of Phytopathology 22:151–168

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemistry Bulletin 19:11–15

    Google Scholar 

  • Ekins RP (1989) Multi-analyte immunoassay. Journal of Pharmaceutical and Biomedical Analysis 7:155–168

    PubMed  CAS  Google Scholar 

  • Emanuel PA, Bell R, Dang JL, McClanahan R, David JC, Burgess RJ, Thompson J, Collins L, Hadfield T (2003) Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler. Journal of Clinical Microbiology 41:689–693

    PubMed  CAS  Google Scholar 

  • Eun AJC, Seoh ML, Wong SM (2000) Simultaneous quantitation of two orchid viruses by the TaqMan real-time RT-PCR. Journal of Virological Methods 87:151–160

    PubMed  CAS  Google Scholar 

  • Fabre F, Kervarrec C, Mieuzet L, Riault G, Vialatte A, Jacquot E (2003) Improvement of Barley yellow dwarf virus-PAV detection in single aphids using a fluorescent real time RT-PCR. Journal of Virological Methods 110:51–60

    PubMed  CAS  Google Scholar 

  • Fessehaie A, De Boer SH, Levesque AC (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathology 93:262–269

    CAS  PubMed  Google Scholar 

  • Fraaije BA, Lovell DJ, Coelho JM, Baldwin S, Hollomon DW (2001) PCR-based assays to assess wheat varietal resistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformis and Puccinia recondita) diseases. European Journal of Plant Pathology 107:905–917

    CAS  Google Scholar 

  • Franke-Whittle IH, Klammer SH, Insam H (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. Journal of Microbiological Methods 62:37–56

    PubMed  CAS  Google Scholar 

  • Fukuta S, Iida T, Mizukami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y (2003a) Detection of Japanese yam mosaic virus by RT-LAMP. Archives of Virology 148:1713–1720

    CAS  Google Scholar 

  • Fukuta S, Kato S, Yoshida K, Mizukami Y, Ishida A, Ueda J, Kanbe M, Ishimoto Y (2003b) Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. Journal of Virological Methods 112:35–40

    CAS  Google Scholar 

  • Fukuta S, Ohishi K, Yoshida K, Mizukami Y, Ishida A, Kanbe M. (2004) Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. Journal of Virological Methods 121:49–55

    PubMed  CAS  Google Scholar 

  • Gallagher WM, Bergin OE, Rafferty M, Kelly ZD, Nolan IM, Fox EJ, Culhane AC, McArdle L, Fraga MF, Hughes L, Currid CA, O’mahony F, Byrne A, Murphy AA, Moss C, McDonnell S, Stallings RL, Plumb JA, Esteller M, Brown R, Dervan PA, Easty DJ (2005) Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis 26:1856–1867

    PubMed  CAS  Google Scholar 

  • Germini A, Rossi S, Zanetti A, Corradini R, Fogher C, Marchelli R (2005) Development of a peptide nucleic acid array platform for the detection of genetically modified organisms in food. Journal of Agricultural and Food Chemistry 53:3958–3962

    PubMed  CAS  Google Scholar 

  • Hadidi A, Czosnek H, Barba M (2004) DNA microarrays and their potential applications for the detection of plant viruses, viroids and phytoplasmas. Journal of Plant Pathology 86:97–104

    CAS  Google Scholar 

  • Harju VA, Skelton A, Clover GRG, Ratti C, Boonham N, Henry CM, Mumford RA (2005) The use of real-time RT-PCR (TaqMan) and post-ELISA virus release for the detection of beet necrotic yellow vein virus types containing RNA 5 and its comparison with conventional RT-PCR. Journal of Virological Methods 123:73–80

    PubMed  CAS  Google Scholar 

  • Hartung JS, Pruvost OP, Villemot I, Alvarez A (1996) Rapid and sensitive colormetric detection of Xanthomonas axonopodis pv. citri by immunocapture and a nested-polymerase chain reaction assay. Phytopathology 86:95–101

    CAS  Google Scholar 

  • Hearps A, Zhang Z, Alexandersen S (2002) Evaluation of the portable Cepheid SmartCycler real-time PCR machine for the rapid diagnosis of foot-and-mouth disease. Veterinary Record 150:625–628

    PubMed  CAS  Google Scholar 

  • Henson JM, French R (1993) The polymerase chain reaction and plant disease diagnosis. Annual Review of Phytopathology 31:81–109

    PubMed  CAS  Google Scholar 

  • Higgins JA, Cooper M, Schroeder-Tucker L, Black S, Miller D, Karns JS, Manthey E, Breeze R, Perdue ML (2002) A field investigation of Bacillus anthracis contamination of US Department of Agriculture and other Washington, DC, buildings during the anthrax attack of October 2001. Applied and Environmental Microbiology 69:593–599

    Google Scholar 

  • Higgins JA, Nasarabadi S, Karns JS, Shelton DR, Cooper M, Gbakima A, Koopman RP (2003) A handheld real time thermal cycler for bacterial pathogen detection. Biosensors and Bioelectronics 18:1115–1123

    PubMed  CAS  Google Scholar 

  • Hilscher C, Vahrson W, Dittmer DP (2005) Faster quantitative real-time PCR protocols may lose sensitivity and show increased variability. Nucleic Acids Research 33:e182

    PubMed  Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5’ to 3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences 88:7276–7280

    CAS  Google Scholar 

  • Hsu YC, Yeh TJ, Chang YC (2005) A new combination of RT-PCR and reverse dot blot hybridization for rapid detection and identification of potyviruses. Journal of Virological Methods 128:54–60

    PubMed  CAS  Google Scholar 

  • Hull R (1986) The potential for using dot-blot hybridisation in the detection of plant viruses. In: Jones RAC, Torrance L (eds) Developments in Applied Biology 1: Developments and Applications in Virus Testing. Association of Applied Biologists, Wellesbourne, UK pp 3–12

    Google Scholar 

  • Ito T, Ieki H, Ozaki K (2002) Simultaneous detection of six citrus viroids and Apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. Journal of Virological Methods 106:235–239

    PubMed  CAS  Google Scholar 

  • Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. Journal of Clinical Microbiology 41:2616–2622

    PubMed  CAS  Google Scholar 

  • Klatser PR, Kuijper S, van Ingen CW, Kolk AHJ (1998) Stabilized, freeze-dried PCR mix for detection of mycobacteria. Journal of Clinical Microbiology 36:1798–1800

    PubMed  CAS  Google Scholar 

  • Klerks MM, Leone GOM, Verbeek M, van den Heuvel JFJM, Schoen CD (2001) Development of a multiplex AmpliDet RNA for the simultaneous detection of Potato leafroll virus and Potato virus Y in potato tubers. Journal of Virological Methods 93:115–125

    PubMed  CAS  Google Scholar 

  • Kox LFF, Boxman ILA, Jansen CCC, Roenhorst JW (2005) Reliability of nucleic acid amplification techniques. Modified target RNA as exogenous internal standard for a real-time RT-PCR for Potato spindle tuber viroid. EPPO Bulletin 35:117–124

    Google Scholar 

  • Landegren U, Schallmeiner E, Nilsson M, Fredriksson S, Baner J, Gullberg M, Jarvius J, Gustafsdottir S, Dahl F, Soderberg O, Ericsson O, Stenberg J (2004) Molecular tools for a molecular medicine: analyzing genes, transcripts and proteins using padlock and proximity probes. Journal of Molecular Recognition 17:194–197

    PubMed  CAS  Google Scholar 

  • Lee GP, Min BE, Kim CS, Choi SH, Harn CH, Kim SU, Ryu KH (2003) Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit-infecting Tobamoviruses. Journal of Virological Methods 110:19–24

    PubMed  CAS  Google Scholar 

  • Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Research 26:2150–2155

    PubMed  CAS  Google Scholar 

  • Leone G, van Schijndel HB, van Gemen B, Schoen CD (1997) Direct detection of potato leafroll virus in potato tubers by immunocapture and the isothermal nucleic acid amplification method NASBA. Journal of Virological Methods 66:19–27

    PubMed  CAS  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Levesque CA, Cammue BPA, Thomma BPHJ (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiology Letters 223:113–122

    PubMed  CAS  Google Scholar 

  • Lin H, Moh JS, Ou YC, Shen SY, Tsai YM, Chang Chien CC, Liu JM, Ma YY (2005) A simple method for the detection and genotyping of high-risk human papillomavirus using seminested polymerase chain reaction and reverse hybridization. Gynecologic Oncology 96:84–91

    PubMed  CAS  Google Scholar 

  • Marko NF, Frank B, Quackenbush J, Lee NH (2005) A robust method for the amplification of RNA in the sense orientation. BMC Genomics 6: 27 [http://www.biomedcentral.com/1471-2164/6/27]

  • Mavrodieva V, Levy L, Gabriel DW (2004) Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology 94:61–68

    CAS  PubMed  Google Scholar 

  • Mori Y, Kitao M, Tomita N, Notomi T (2004) Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical and Biophysical Methods 59:145–157

    PubMed  CAS  Google Scholar 

  • Mumford R, Barker I, Walsh K, Boonham N (2000) The reliable detection of Potato mop-top and Tobacco rattle viruses directly from potato tubers, using a multiplex TaqMan assay. Phytopathology 90:448–453

    CAS  PubMed  Google Scholar 

  • Mumford RA, Skelton A, Metcalfe E, Walsh K, Boonham N (2004b) The reliable detection of Barley yellow and mild mosaic viruses using real-time PCR (TaqMan). Journal of Virological Methods 117:153–159

    CAS  Google Scholar 

  • Mumford RA, Skelton A, Posthuma KI, Kirby MJ, Boonham N, Adams AN (2004a) The improved detection of Strawberry crinkle virus using real-time RT-PCR (TaqMan®). Acta Horticulturae 656:81–86

    CAS  Google Scholar 

  • Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes 16:223–229

    PubMed  CAS  Google Scholar 

  • Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T (2001) Loop-mediated isothermal amplification reaction using a nondenatured template. Clinical Chemistry 47:1742–1743

    PubMed  CAS  Google Scholar 

  • Nicolaisen M (2003) Partial molecular characterization of Dahlia mosaic virus and its detection by PCR. Plant Disease 87:945–948

    CAS  Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrom K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. Journal of Microbiological Methods 62:57–69

    PubMed  CAS  Google Scholar 

  • Nicolaisen M, Rasmussen HN, Husted K, Nielsen SL (2001) Reverse transcription-detection of immobilized, amplified product in a one-phase system (RT-DIAPOPS) for the detection of potato virus Y. Plant Pathology 50:124–129

    CAS  Google Scholar 

  • Nie XZ (2005) Reverse transcription loop-mediated isothermal amplification of DNA for detection of Potato virus Y. Plant Disease 89:605–610

    CAS  Google Scholar 

  • Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    PubMed  CAS  Google Scholar 

  • Nolasco G, De Blas C, Torres V, Ponz F (1993) A method combining immunocapture and PCR amplification in a microtitre plate for the detection of plant viruses and subviral pathogens. Journal of Virological Methods 45:201–218

    PubMed  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28:e63

    PubMed  CAS  Google Scholar 

  • O’Donnell J, Canning E, Young LGA (1996) Detection of Potato virus Y using ligase chain reaction (LCR), in combination with a microtitre plate based method for product detection. In: Marshall G (ed) Diagnostics in Crop Production: BCPC Symposium Proceedings No. 65 (pp. 187–192) British Crop Protection Council, Farnham, UK

  • Okuda M, Matsumoto M, Tanaka Y, Subandiyah S, Iwanami T (2005) Characterization of the tufB-secE-nusG-rplKAJL-rpoB gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Disease 89:705–711

    CAS  Google Scholar 

  • Olmos A, Bertolini E, Gil M, Cambra M (2005) Real-time assay for quantitative detection of non-persistently transmitted Plum pox virus RNA targets in single aphids. Journal of Virological Methods 128:151–155

    PubMed  CAS  Google Scholar 

  • Olmos A, Dasi MA, Candresse T, Cambra M (1996) Print-capture PCR: a simple and highly sensitive method for the detection of plum pox virus (PPV) in plant tissues. Nucleic Acids Research 24:2192–2193

    PubMed  CAS  Google Scholar 

  • Persson K, Hamby K, Ugozzoli LA (2005) Four-color multiplex reverse transcription polymerase chain reaction - overcoming its limitations. Analytical Biochemistry 344:33–42

    PubMed  CAS  Google Scholar 

  • Pfunder M, Holzgang O, Frey JE (2004) Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Molecular Ecology 13:1277–1286

    PubMed  CAS  Google Scholar 

  • Puchta H, Sanger HL (1989) Sequence analysis of minute amounts of viroid RNA using the polymerase chain reaction (PCR). Archives of Virology 106:335–340

    PubMed  CAS  Google Scholar 

  • Ragozzino E, Faggioli F, Barba M (2004) Development of a one tube-one step RT-PCR protocol for the detection of seven viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid and Pospiviroid. Journal of Virological Methods 121:25–29

    PubMed  CAS  Google Scholar 

  • Raja S, Ching J, Xi LQ, Hughes SJ, Chang R, Wong W, McMillan W, Gooding WE, McCarty KS, Chestney M, Luketich JD, Godfrey TE (2005) Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clinical Chemistry 51:882–890

    PubMed  CAS  Google Scholar 

  • Rowhani A, Biardi L, Routh G, Daubert SD, Golino DA (1998) Development of a sensitive colorimetric-PCR assay for detection of viruses in woody plants. Plant Disease 82:880–884

    CAS  Google Scholar 

  • Rowhani A, Maningas MA, Lile LS, Daubert SD, Golino DA (1995) Development of a detection system for viruses of woody plants based on PCR analysis of immobilised virions. Phytopathology 85:347–352

    CAS  Google Scholar 

  • Rudi K, Rud I, Holck A (2003) A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed. Nucleic Acids Research 31:e62

    PubMed  Google Scholar 

  • Rudi K (2003) Application of 16S rDNA arrays for analyses of microbial communities. Recent Research Developments in Bacteriology 1:35–44

    CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA (1988) Primer directed enzymic amplification of DNA with a thermostable polymerase. Science 239:487–491

    PubMed  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of Beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230:1350–1354

    PubMed  CAS  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology 24:250–258

    Article  CAS  Google Scholar 

  • Schaad NW, Berthier-Schaad Y, Sechler A, Knorr D (1999) Detection of Clavibacter michiganensis subsp sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Plant Disease 83:1095–1100

    CAS  Google Scholar 

  • Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology 41:305–324

    PubMed  CAS  Google Scholar 

  • Schaad NW, Opgenorth D, Gaush P (2002). Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce’s disease of grape in early season symptomatic vines. Phytopathology 92:721–728

    CAS  PubMed  Google Scholar 

  • Schena L, Nigro F, Ippolito A (2002) Identification and detection of Rosellinia necatrix by conventional and real-time Scorpion-PCR. European Journal of Plant Pathology 108:355–366

    CAS  Google Scholar 

  • Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology 110:893–908

    CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    PubMed  CAS  Google Scholar 

  • Schneider WL, Sherman DJ, Stone AL, Damsteegt VD, Frederick RD (2004) Specific detection and quantification of Plum pox virus by real-time fluorescent reverse transcription-PCR. Journal of Virological Methods 120:97–105 2004

    PubMed  CAS  Google Scholar 

  • Schoen CD, Knorr D, Leone G (1996) Detection of potato leafroll virus in dormant potato tubers by immunocapture and a fluorogenic 5’ nuclease RT-PCR assay. Phytopathology 86:993–999

    CAS  Google Scholar 

  • Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research 6:639–645

    PubMed  CAS  Google Scholar 

  • Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genetics 14:450–456

    PubMed  CAS  Google Scholar 

  • Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environmental Microbiology 6:347–363

    PubMed  CAS  Google Scholar 

  • Sun ZF, Hu CQ, Ren CH, Shen Q (2006) Sensitive and rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimps by loop-mediated isothermal amplification. Journal of Virological Methods 131:41–46

    PubMed  CAS  Google Scholar 

  • Szemes M, Bonants P, de Weerd M, Bane J, Landegre U, Schoen CD (2005) Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Research 33:e70

    PubMed  Google Scholar 

  • ‘t Hoen PA, de Kort F, van Ommen GJ, den Dunnen JT (2003) Fluorescent labelling of cRNA for microarray applications. Nucleic Acids Research 31:e20

    PubMed  Google Scholar 

  • Tamaoki M, Matsuyama T, Nakajima N, Aono M, Kubo A, Saji H (2004) A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Environmental Pollution 131:137–145

    PubMed  CAS  Google Scholar 

  • Thai HTC, Le MQ, Vuong CD, Parida M, Minekawa H, Notomi T, Hasebe F, Morita K (2004) Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. Journal of Clinical Microbiology 42:1956–1961

    CAS  Google Scholar 

  • Thelwell N, Millington S, Solinas A, Booth J, Brown T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research 28:3752–3761

    PubMed  CAS  Google Scholar 

  • Tomlinson JA, Boonham N, Hughes KJD, Griffin RL, Barker I (2005) On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology 71:6702–6710

    PubMed  CAS  Google Scholar 

  • van Beckhoven JRCM, Stead DE, van der Wolf JM (2002) Detection of Clavibacter michiganensis subsp. sepedonicus by AmpliDet RNA, a new technology based on real time monitoring of NASBA amplicons with a molecular beacon. Journal of Applied Microbiology 93:840–849

    PubMed  Google Scholar 

  • Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proceedings of the National Academy of Sciences 87:1663–1667

    Google Scholar 

  • Van Kessel JS, Karns JS, Perdue ML (2003) Using a portable real-time PCR assay to detect Salmonella in raw milk. Journal of Food Protection 66:1762–1767

    PubMed  Google Scholar 

  • Vora GJ, Meador CE, Stenger DA, Andreadis JD (2004) Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Applied and Environmental Microbiology 70:3047–3054

    PubMed  CAS  Google Scholar 

  • Walsh K, Boonham N, Barker I, Collins DW (2005) Development of a sequence-specific real-time PCR to the melon thrips Thrips palmi (Thysanoptera; Thripidae). Journal of Applied Entomology 129:272–279

    CAS  Google Scholar 

  • Ward LI, Fenn MGE, Henry CM (2004) A rapid method for direct detection of Polymyxa DNA in soil. Plant Pathology 53:485–490

    CAS  Google Scholar 

  • Weekes RJ, Barker I, Wood KR (1996) An RT-PCR test for the detection of tomato spotted wilt tospovirus incorporating immunocapture and colorimetric estimation. Journal of Phytopathology 144:575–580

    CAS  Google Scholar 

  • Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE (2000) Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Applied and Environmental Microbiology 66:2853–2858

    PubMed  CAS  Google Scholar 

  • Wetzel T, Candresse T, Macquaire G, Ravelonandro M, Dunez J (1992) A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. Journal of Virological Methods 39:27–37

    PubMed  CAS  Google Scholar 

  • Wilson WJ, Wiedmann M, Dillard HR, Batt CA (1994) Identification of Erwinia stewartii by a ligase chain-reaction assay. Applied and Environmental Microbiology 60:278–284

    PubMed  CAS  Google Scholar 

  • Winton LM, Manter DK, Stone JK, Hansen EA (2003) Comparison of biochemical, molecular, and visual methods to quantify Phaeocryptopus gaeumannii in Douglas-Fir foliage. Phytopathology 93:121–126

    CAS  PubMed  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Yokoyama S, Hirano T, Kitamura H, Ohara O (2004) A simple and robust method for preparation of cDNA nylon microarrays. DNA Research 11:353–360

    PubMed  CAS  Google Scholar 

  • Zhang AW, Hartman GL, Curio-Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology 89:796–804

    CAS  PubMed  Google Scholar 

  • Zhang DY, Liu B (2003) Detection of target nucleic acids and proteins by amplification of circularizable probes. Expert Review of Molecular Diagnostics 3:237–248

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Mumford.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10658-006-9084-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumford, R., Boonham, N., Tomlinson, J. et al. Advances in molecular phytodiagnostics – new solutions for old problems. Eur J Plant Pathol 116, 1–19 (2006). https://doi.org/10.1007/s10658-006-9037-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-006-9037-0

Keywords