Skip to main content

Advertisement

Log in

Longitudinal trajectories of lifetime body shape and prostate cancer angiogenesis

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Angiogenesis potentially underlies the pathway between excess adiposity and prostate carcinogenesis. This study examined the association between lifetime body shape trajectories and prostate cancer angiogenesis. 521 prostate cancer patients who underwent prostatectomy or transurethral resection between 1986 and 2000 were enrolled from the Health Professionals Follow-up Study. Cancers were immunostained and quantitated for cancer vessel regularity, diameter, area, and density, and composite angiogenesis (factor analysis). To identify distinct groups of body shape change, we conducted group-based trajectory modeling. We used multivariable linear regression to estimate the percentage difference in angiogenesis score and 95% confidence interval (CI) between body shape change trajectories during lifetime (age 5–60 years), early life (age 5–30 years), or later life (age 30–60 years). Compared to men with lifetime lean or medium body shape, higher angiogenesis scores were observed in men with moderate increase [percentage difference of 35% (95% CI 5–64)], marked increase [24% (95% CI − 2 to 51)], and constantly heavy with mild increase body shape [38% (95% CI 8–69)]. However, a lower angiogenesis score was noted in men with early-life marked increase (− 22%, 95% CI − 44 to 0) and stable medium body shape (− 14%, 95% CI − 40 to 12), compared to moderate increase body shape. Increased angiogenesis was also found for absolute weight gain from age 21–60 years. Lifetime body fatness accumulation, especially after age 21, was associated with increased prostate cancer angiogenesis, while weight gain in early-life adulthood was associated with lower cancer angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data is available upon proper request.

Code availability

The code is available upon proper request.

Abbreviations

BMI:

Body mass index

OR:

Odds ratio

HPFS:

Health professionals follow-up study

PSA:

Prostate-specific antigen

AHEI:

Alternative healthy eating index dietary score

NSAID:

Non-steroidal anti-inflammatory drug

MET:

Metabolic equivalent task

OCC:

Odds of correct classification

CI:

Confidence interval

References

  1. Sung H, Siegel RL, Torre LA, et al. Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin. 2019;69(2):88–112. https://doi.org/10.3322/caac.21499.

    Article  PubMed  Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41. https://doi.org/10.1001/jama.2009.2014.

    Article  CAS  PubMed  Google Scholar 

  3. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. https://doi.org/10.1056/NEJMoa021423.

    Article  PubMed  Google Scholar 

  4. Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794–8. https://doi.org/10.1056/NEJMsr1606602.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

  6. Harrison S, Tilling K, Turner EL, et al. Systematic review and meta-analysis of the associations between body mass index, prostate cancer, advanced prostate cancer, and prostate-specific antigen. Cancer Causes Control. 2020;31(5):431–49. https://doi.org/10.1007/s10552-020-01291-3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Song M, Willett WC, Hu FB, et al. Trajectory of body shape across the lifespan and cancer risk. Int J Cancer. 2016;138(10):2383–95. https://doi.org/10.1002/ijc.29981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giovannucci E. Adiposity over the life course and prostate cancer: unraveling the complexities. Cancer Causes Control. 2020;31(12):1051–5. https://doi.org/10.1007/s10552-020-01353-6.

    Article  PubMed  Google Scholar 

  9. Moller E, Wilson KM, Batista JL, Mucci LA, Balter K, Giovannucci E. Body size across the life course and prostate cancer in the Health Professionals Follow-up Study. Int J Cancer. 2016;138(4):853–65. https://doi.org/10.1002/ijc.29842.

    Article  CAS  PubMed  Google Scholar 

  10. Robinson WR, Stevens J, Gammon MD, John EM. Obesity before age 30 years and risk of advanced prostate cancer. Am J Epidemiol. 2005;161(12):1107–14. https://doi.org/10.1093/aje/kwi150.

    Article  PubMed  Google Scholar 

  11. Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA. Anthropometry in relation to prostate cancer risk in the Netherlands Cohort Study. Am J Epidemiol. 2000;151(6):541–9. https://doi.org/10.1093/oxfordjournals.aje.a010241.

    Article  CAS  PubMed  Google Scholar 

  12. Genkinger JM, Wu K, Wang M, et al. Measures of body fatness and height in early and mid-to-late adulthood and prostate cancer: risk and mortality in The Pooling Project of Prospective Studies of Diet and Cancer. Ann Oncol. 2020;31(1):103–14. https://doi.org/10.1016/j.annonc.2019.09.007.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly SP, Lennon H, Sperrin M, et al. Body mass index trajectories across adulthood and smoking in relation to prostate cancer risks: the NIH-AARP Diet and Health Study. Int J Epidemiol. 2019;48(2):464–73. https://doi.org/10.1093/ije/dyy219.

    Article  PubMed  Google Scholar 

  14. Lavalette C, Cordina Duverger E, Artaud F, et al. Body mass index trajectories and prostate cancer risk: results from the EPICAP study. Cancer Med. 2020;9(17):6421–9. https://doi.org/10.1002/cam4.3241.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma J, Li H, Giovannucci E, et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol. 2008;9(11):1039–47. https://doi.org/10.1016/S1470-2045(08)70235-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dickerman BA, Ahearn TU, Giovannucci E, et al. Weight change, obesity and risk of prostate cancer progression among men with clinically localized prostate cancer. Int J Cancer. 2017;141(5):933–44. https://doi.org/10.1002/ijc.30803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res (Phila). 2011;4(4):486–501. https://doi.org/10.1158/1940-6207.CAPR-10-0229.

    Article  CAS  Google Scholar 

  18. Eisermann K, Fraizer G. The androgen receptor and VEGF: mechanisms of androgen-regulated angiogenesis in prostate cancer. Cancers (Basel). 2017. https://doi.org/10.3390/cancers9040032.

  19. Adair THMJ. Chapter 1, Overview of angiogenesis. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  20. Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK. Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst. 1999;91(6):512–23. https://doi.org/10.1093/jnci/91.6.512.

    Article  CAS  PubMed  Google Scholar 

  21. Mucci LA, Powolny A, Giovannucci E, et al. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol. 2009;27(33):5627–33. https://doi.org/10.1200/JCO.2008.20.8876.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. 1991;338(8765):464–8. https://doi.org/10.1016/0140-6736(91)90542-w.

    Article  CAS  PubMed  Google Scholar 

  23. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology. 1990;1(6):466–73.

    Article  CAS  Google Scholar 

  24. Stunkard AJ, Sorensen T, Schulsinger F. Use of the Danish adoption register for the study of obesity and thinness. Res Publ Assoc Res Nerv Ment Dis. 1983;60:115–20.

    CAS  PubMed  Google Scholar 

  25. Must A, Willett WC, Dietz WH. Remote recall of childhood height, weight, and body build by elderly subjects. Am J Epidemiol. 1993;138(1):56–64. https://doi.org/10.1093/oxfordjournals.aje.a116777.

    Article  CAS  PubMed  Google Scholar 

  26. Hang D, Nan H, Kvaerner AS, et al. Longitudinal associations of lifetime adiposity with leukocyte telomere length and mitochondrial DNA copy number. Eur J Epidemiol. 2018;33(5):485–95. https://doi.org/10.1007/s10654-018-0382-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kvaerner AS, Hang D, Giovannucci EL, Willett WC, Chan AT, Song M. Trajectories of body fatness from age 5 to 60 y and plasma biomarker concentrations of the insulin-insulin-like growth factor system. Am J Clin Nutr. 2018;108(2):388–97. https://doi.org/10.1093/ajcn/nqy103.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Albertsen PC, Hanley JA, Barrows GH, et al. Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst. 2005;97(17):1248–53. https://doi.org/10.1093/jnci/dji248.

    Article  PubMed  Google Scholar 

  29. Pelton K, Coticchia CM, Curatolo AS, et al. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. Am J Pathol. 2014;184(7):2099–110. https://doi.org/10.1016/j.ajpath.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zu K, Mucci L, Rosner BA, et al. Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. J Natl Cancer Inst. 2014;106(2):djt430. https://doi.org/10.1093/jnci/djt430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCullough ML, Feskanich D, Stampfer MJ, et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. 2002;76(6):1261–71. https://doi.org/10.1093/ajcn/76.6.1261.

    Article  CAS  PubMed  Google Scholar 

  32. Song M, Hu FB, Wu K, et al. Trajectory of body shape in early and middle life and all cause and cause specific mortality: results from two prospective US cohort studies. BMJ. 2016;353:i2195. https://doi.org/10.1136/bmj.i2195.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Louvet B. Latent class growth modelling: a tutorial. Tutor Quant Methods Psychol. 2009;5(1):11–24.

    Article  Google Scholar 

  34. Bygdell M, Kindblom JM, Celind J, Nethander M, Ohlsson C. Childhood BMI is inversely associated with pubertal timing in normal-weight but not overweight boys. Am J Clin Nutr. 2018;108(6):1259–63. https://doi.org/10.1093/ajcn/nqy201.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ohlsson C, Bygdell M, Sonden A, Rosengren A, Kindblom JM. Association between excessive BMI increase during puberty and risk of cardiovascular mortality in adult men: a population-based cohort study. Lancet Diabetes Endocrinol. 2016;4(12):1017–24. https://doi.org/10.1016/S2213-8587(16)30273-X.

    Article  PubMed  Google Scholar 

  36. Sutcliffe S, Colditz GA. Prostate cancer: is it time to expand the research focus to early-life exposures? Nat Rev Cancer. 2013;13(3):208–518. https://doi.org/10.1038/nrc3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dickerman BA, Torfadottir JE, Valdimarsdottir UA, et al. Body fat distribution on computed tomography imaging and prostate cancer risk and mortality in the AGES-Reykjavik study. Cancer. 2019;125(16):2877–85. https://doi.org/10.1002/cncr.32167.

    Article  PubMed  Google Scholar 

  38. O’Sullivan J, Lysaght J, Donohoe CL, Reynolds JV. Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol. 2018;15(11):699–714. https://doi.org/10.1038/s41575-018-0069-7.

    Article  PubMed  Google Scholar 

  39. Venkatasubramanian PN, Brendler CB, Plunkett BA, et al. Periprostatic adipose tissue from obese prostate cancer patients promotes tumor and endothelial cell proliferation: a functional and MR imaging pilot study. Prostate. 2014;74(3):326–35. https://doi.org/10.1002/pros.22756.

    Article  PubMed  Google Scholar 

  40. Leslie SW, Soon-Sutton TL, Sajjad H, et al. Prostate Cancer. [Updated 2021 Sep 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK470550/.

  41. Yang M, Zu K, Mucci LA, et al. Vascular morphology differentiates prostate cancer mortality risk among men with higher Gleason grade. Cancer Causes Control. 2016;27(8):1043–7. https://doi.org/10.1007/s10552-016-0782-x.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Arendt LM, McCready J, Keller PJ, et al. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 2013;73(19):6080–93. https://doi.org/10.1158/0008-5472.CAN-13-0926.

    Article  CAS  PubMed  Google Scholar 

  43. Mendonca F, Soares R. Obesity and cancer phenotype: is angiogenesis a missed link? Life sciences. 2015;139:16–23. https://doi.org/10.1016/j.lfs.2015.08.009.

    Article  CAS  PubMed  Google Scholar 

  44. Fu BC, Wang K, Mucci LA, Clinton SK, Giovannucci EL. Aspirin use and prostate tumor angiogenesis. Cancer Causes Control. 2021. https://doi.org/10.1007/s10552-021-01501-6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Chen JQ, Xie L, et al. Effect of aspirin and other non-steroidal anti-inflammatory drugs on prostate cancer incidence and mortality: a systematic review and meta-analysis. BMC Med. 2014;12:55. https://doi.org/10.1186/1741-7015-12-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Platz EA. Energy imbalance and prostate cancer. J Nutr. 2002;132(11 Suppl):3471S-81S. https://doi.org/10.1093/jn/132.11.3471S.

    Article  Google Scholar 

  47. Birrane G, Li H, Yang S, Tachado SD, Seng S. Cigarette smoke induces nuclear translocation of heme oxygenase 1 (HO-1) in prostate cancer cells: nuclear HO-1 promotes vascular endothelial growth factor secretion. Int J Oncol. 2013;42(6):1919–28. https://doi.org/10.3892/ijo.2013.1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants and staff of the Health Professionals Follow-Up Study for their valuable contributions as well as the following state cancer registries for their help: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Nebraska, New Hampshire, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, Tennessee, Texas, Virginia, Washington and Wyoming. The authors assume full responsibility for the analyses and interpretation of these data.

Funding

This work was supported by the Erik and Edith Fernström Foundation (2019-00424) and Svenska Läkaresällskapet (SLS-869891). The Health Professionals Follow-up Study is supported by U01 167552. This project was a partnership of the Dana-Farber/Harvard Cancer Center (NIH P30 006516) and The Ohio State University Comprehensive Cancer Center: NIH P30 CA016058.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: QLW and ELG; acquisition of data: SKC, LAM and ELG; data analysis: QLW; interpretation of results: all authors; drafting the manuscript: QLW; critical revision of the manuscript for valuable intellectual content: all authors; supervision: JL and ELG. All authors have approved the final version of the manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Corresponding authors

Correspondence to Qiao-Li Wang or Edward L. Giovannucci.

Ethics declarations

Conflict of interest

The study sponsors had no role in the study design, the data collection, analysis, and interpretation, the writing of the report, or the decision to submit the manuscript for publication. The authors declare that they have no conflict of interest.

Ethics approval

The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required.

Consent to participate

Return of the completed questionnaire implied informed consent to participate in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QL., Song, M., Clinton, S.K. et al. Longitudinal trajectories of lifetime body shape and prostate cancer angiogenesis. Eur J Epidemiol 37, 261–270 (2022). https://doi.org/10.1007/s10654-021-00838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-021-00838-1

Keywords

Navigation