Skip to main content

Advertisement

Log in

When will individuals meet their personalized probabilities? A philosophical note on risk prediction

  • ESSAY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Risk prediction is one of the central goals of medicine. However, ultimate prediction–perfectly predicting whether individuals will actually get a disease–is still out of reach for virtually all conditions. One crucial assumption of ultimate personalized prediction is that individual risks in the relevant sense exist. In the present paper we argue that perfect prediction at the individual level will fail–and we will do so by providing pragmatic, epistemic, conceptual, and ontological arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Ganz P, Heidecker B, Hveem K, Jonasson C, Kato S, Segal MR, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. 2016;315(23):2532–41.

    Article  CAS  PubMed  Google Scholar 

  2. Kent DM, Steyerberg E, van Klaveren D. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ (Clinical research ed). 2018;363:k4245.

    Article  Google Scholar 

  3. Goodman SN. Probability at the bedside: the knowing of chances or the chances of knowing? Ann Intern Med. 1999;130(7):604–6.

    Article  CAS  PubMed  Google Scholar 

  4. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet (Lond, Engl). 2014;383(9921):999–1008.

    Article  Google Scholar 

  5. Piccininni M, Konigorski S, Rohmann JL, Kurth T. Directed acyclic graphs and causal thinking in clinical risk prediction modeling. BMC Med Res Methodol. 2020;20(1):179.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ickerman BA, Hernán MA. Counterfactual prediction is not only for causal inference. Eur J epidemiol. 2005;35(7):615–7.

    Article  Google Scholar 

  7. Mulder JM. A Vital Challenge to Materialism. Philosophy. 2016;91(2):153–82.

    Article  Google Scholar 

  8. Earman J. A Primer on Determinism: D. Reidel; D. Reidel Publishing Company; Dordrecht 1986.

  9. Cartwright N. Hunting Causes and Using Them: Approaches in Philosophy and Economics. Cambridge University Press, Cambridge 2009.

  10. Dahabreh IJ, Hayward R, Kent DM. Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centred evidence. Int J Epidemiol. 2016;45(6):2184–93.

    PubMed  PubMed Central  Google Scholar 

  11. Stern RH. Individual risk. J clin hypertens (Greenwich, Conn). 2012;14(4):261–4.

    Article  Google Scholar 

  12. Park KS. The search for genetic risk factors of type 2 diabetes mellitus. Diabetes metab J. 2011;35(1):12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Personalized GA, Medicine P. In: The Routledge Companion to Philosophy of Medicine. Jeremy R Simon, Harold Kincaid: Edited ByMiriam Solomon; 2016.

    Google Scholar 

  14. Saracci R. Epidemiology in wonderland: Big Data and precision medicine. Eur J Epidemiol. 2018;33(3):245–57.

    Article  PubMed  Google Scholar 

  15. Smith GD. Post-modern epidemiology: when methods meet matter. Am J Epidemiol. 2019;188(8):1410–9.

    Article  Google Scholar 

  16. Smith GD. Epidemiology, epigenetics and the “Gloomy Prospect”: embracing randomness in population health research and practice. Int J Epidemiol. 2011;40(3):537–62.

    Article  PubMed  Google Scholar 

  17. Hoefer C. Causal Determinism. In: Zalta EN, editor. The Stanford Encyclopedia of Philosophy (Spring 2016 Edition). https://plato.stanford.edu/archives/spr2016/entries/determinism-causal/

  18. Coggon DI, Martyn CN. Time and chance: the stochastic nature of disease causation. Lancet (Lond, Engl). 2005;365(9468):1434–7.

    Article  CAS  Google Scholar 

  19. Giere RN. Objective Single-Case Probabilities and the Foundations of Statistics. Studies in Logic and the Foundations of Mathematics. 74: Elsevier; 1973. p. 467–83.

  20. Gillies D. Varieties of propensity. Br J Philosophy Sci. 2000;51(4):807–35.

    Article  Google Scholar 

  21. Hájek A. Interpretations of probability. In: Zalta EN, editor. Stanford Encyclopedia of Philosophy (Fall 2019 Edition); 2019. https://plato.stanford.edu/archives/fall2019/entries/probability-interpret/

  22. Dupré JA, Nicholson DJ. A Manifesto for a Processual Philosophy of Biology. In Nicholson DJ, Dupre JA, editors. Everything Flows: Towards a Processual Philosophy of Biology. Oxford University Press, USA; 2018.

  23. Dupré J. Living Causes. Aristotelian Society Supplementary Volume 2013;87(1):19–37.

  24. Vandenbroucke JP. Cerebral sinus thrombosis and oral contraceptives there are limits to predictability. BMJ (Clin res ed). 1998;317(7157):483–4.

    Article  CAS  Google Scholar 

  25. Machamer P, Darden L, Craver CF. Thinking about mechanisms. Philos Sci. 2000;67(1):1–25.

    Article  Google Scholar 

  26. Mulder JM. Varieties of Power. Axiomathes. 2020. https://doi.org/10.1007/s10516-020-09481-z

  27. Loos RJF, Janssens A. Predicting polygenic obesity using genetic information. Cell Metab. 2017;25(3):535–43.

    Article  CAS  PubMed  Google Scholar 

  28. Morris RW, Cooper JA, Shah T, Wong A, Drenos F, Engmann J, et al. Marginal role for 53 common genetic variants in cardiovascular disease prediction. Heart. 2016;102(20):1640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Joyner MJ, Paneth N. Promises, promises, and precision medicine. J Clin Investig. 2019;129(3):946–8.

    Article  PubMed  Google Scholar 

  30. Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R, et al. Time to reality check the promises of machine learning-powered precision medicine. The Lancet Digital Health. https://doi.org/10.1016/S2589-7500(20)30200-4

  31. Smith GD, Egger M. Incommunicable knowledge? Interpreting and applying the results of clinical trials and meta-analyses. J Clin Epidemiol. 1998;51(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  32. Knowles JW, Ashley EA. Cardiovascular disease: The rise of the genetic risk score. PLoS Med. 2018;15(3):e1002546-e.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ewout Steyerberg, George Davey-Smith, Doranne Thomassen and Jan Vandenbroucke for constructive comments on a prefinal version of the manuscript.

Funding

JM was funded by NWO (VENI) Grant number 275–20-068.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and writing.

Corresponding author

Correspondence to Olaf M. Dekkers.

Ethics declarations

Conflict of interest

No conflict of interest

Availability of data and material

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors both consent with publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekkers, O.M., Mulder, J.M. When will individuals meet their personalized probabilities? A philosophical note on risk prediction. Eur J Epidemiol 35, 1115–1121 (2020). https://doi.org/10.1007/s10654-020-00700-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-020-00700-w

Keywords

Navigation