Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in overweight from childhood to early adulthood and risk of type 2 diabetes. NEJM. 2018;378(14):1302–12.
Article
Google Scholar
Millard LAC, Davies NM, Tilling K, Gaunt TR, Davey Smith G. Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization. PLoS Genet. 2019;15(2):e1007951.
CAS
Article
Google Scholar
Ärnlöv J, Ingelsson E, Sundström J, Lind L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation. 2010;121:230–6.
Article
Google Scholar
Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward AM. Cardiovascular disease risk in healthy children and its association with body mass index: systematic review and meta-analysis. BMJ. 2012;345:129–32.
Article
Google Scholar
Rinella M. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313:2263–73.
CAS
Article
Google Scholar
Hagström H, Tynelius P, Rasmussen F. High BMI in late adolescence predicts future severe liver disease and hepatocellular carcinoma : a national, population-based cohort study in 1.2 million men. Gut. 2018;67:1536–42.
Article
Google Scholar
Secretan BL, Scoccianti C, Loomis D. Body fatness and cancer—viewpoint of the IARC working group. NEJM. 2016;375:794–8.
Article
Google Scholar
Bhaskaran K, Douglas I, Forbes H, Dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet. 2014;384:755–65.
Article
PubMed
PubMed Central
Google Scholar
Benn M, Tybjærg-Hansen A, Smith GD, Nordestgaard BG. High body mass index and cancer risk—a Mendelian randomisation study. Eur J Epidemiol. 2016;31:879–92.
CAS
Article
Google Scholar
Andersen CJ, Murphy KE, Fernandez ML. Impact of obesity and metabolic syndrome on immunity. Adv Nutr Int Rev J. 2016;7:66–75.
CAS
Article
Google Scholar
Kanneganti T, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13:707–12.
CAS
Article
PubMed
Google Scholar
Kaspersen KA, Pedersen OB, Petersen MS, Hjalgrim H, Rostgaard K, Møller BK, et al. Obesity and risk of infection: results from the Danish Blood Donor Study. Epidemiology. 2015;26:580–9.
Article
Google Scholar
Harpsøe MC, Nielsen NM, Friis-Møller N, Andersson M, Wohlfahrt J, Linneberg A, et al. Body mass index and risk of infections among women in the Danish National Birth Cohort. Am J Epidemiol. 2016;183:1008–17.
Article
Google Scholar
Ghilotti F, Bellocco R, Ye W, Adami H-O, Lagerros YT. Obesity and risk of infections: results from men and women in the Swedish National March Cohort. Int J Epidemiol. 2019;48:1783–94.
PubMed
Google Scholar
Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.
Article
Google Scholar
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.
Article
Google Scholar
Benn M, Nordestgaard BG. From genome-wide association studies to Mendelian randomization: novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment. Cardivasc Res. 2018;114:1192–208.
CAS
Google Scholar
Nordestgaard BG, Palmer TM, Benn M, Zacho J, Tybjærg-Hansen A, Smith GD, et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a mendelian randomisation approach. PLoS Med. 2012;9(5):e1001212.
Article
Google Scholar
Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. Scand J Public Health. 2011;39:30–3.
Article
Google Scholar
Helby J, Nordestgaard BG, Benfield T, Bojesen SE. Shorter leukocyte telomere length is associated with higher risk of infections: a prospective study of 75,309 individuals from the general population. Haematologica. 2017;102:1457–65.
CAS
Article
Google Scholar
Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal eighteen new loci associated with body mass index. Nat Genet. 2010;42:937–48.
CAS
Article
Google Scholar
Renström F, Shungin D, Johansson I, Florez JC, Hallmans G, et al. Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis. Diabetes. 2011;60:345–54.
CAS
Article
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Google Scholar
Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol. 2017;41:341–52.
Article
Google Scholar
Staley JR. nlmr: Non-linear Mendelian randomisation. 2018. https://github.com/jrs95/nlmr.
Sjolander A, Dahlqwist E, Martinussen T. ivtools: instrumental variables. 2019. https://cran.r-project.org/package=ivtools.
Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.
Article
Google Scholar
Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56:901–16.
Article
Google Scholar
Garcia Hidalgo L. Dermatological complications of obesity. Am J Clin Dermatol. 2002;3:497–506.
Article
Google Scholar
Hägg S, Fall T, Ploner A, Mägi R, Fischer K, Draisma HHM, et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int J Epidemiol. 2015;44:578–86.
Article
Google Scholar
Smith GD, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:89–98.
Article
Google Scholar