Skip to main content

Advertisement

Log in

A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research

  • GUIDELINES
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

To inform evidence-based practice in health care, guidelines and policies require accurate identification, collation, and integration of all available evidence in a comprehensive, meaningful, and time-efficient manner. Approaches to evidence synthesis such as carefully conducted systematic reviews and meta-analyses are essential tools to summarize specific topics. Unfortunately, not all systematic reviews are truly systematic, and their quality can vary substantially. Since well-conducted evidence synthesis typically involves a complex set of steps, we believe formulating a cohesive, step-by-step guide on how to conduct a systemic review and meta-analysis is essential. While most of the guidelines on systematic reviews focus on how to report or appraise systematic reviews, they lack guidance on how to synthesize evidence efficiently. To facilitate the design and development of evidence syntheses, we provide a clear and concise, 24-step guide on how to perform a systematic review and meta-analysis of observational studies and clinical trials. We describe each step, illustrate it with concrete examples, and provide relevant references for further guidance. The 24-step guide (1) simplifies the methodology of conducting a systematic review, (2) provides healthcare professionals and researchers with methodologically sound tools for conducting systematic reviews and meta-analyses, and (3) it can enhance the quality of existing evidence synthesis efforts. This guide will help its readers to better understand the complexity of the process, appraise the quality of published systematic reviews, and better comprehend (and use) evidence from medical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manchikanti L. Evidence-based medicine, systematic reviews, and guidelines in interventional pain management, part I: introduction and general considerations. Pain Physician. 2008;11(2):161–86.

    PubMed  Google Scholar 

  2. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Qual Rep Meta-Anal Lancet. 1999;354(9193):1896–900.

    CAS  Google Scholar 

  3. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    Article  Google Scholar 

  4. Dekkers OM, Vandenbroucke JP, Cevallos M, Renehan AG, Altman DG, Egger M. COSMOS-E: guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med. 2019;16(2):e1002742. https://doi.org/10.1371/journal.pmed.1002742.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conway A, Inglis SC, Chang AM, Horton-Breshears M, Cleland JG, Clark RA. Not all systematic reviews are systematic: a meta-review of the quality of systematic reviews for non-invasive remote monitoring in heart failure. J Telemed Telecare. 2013;19(6):326–37. https://doi.org/10.1177/1357633X13503427.

    Article  PubMed  Google Scholar 

  6. Gurevitch J, Koricheva J, Nakagawa S, Stewart G. Meta-analysis and the science of research synthesis. Nature. 2018;555(7695):175–82. https://doi.org/10.1038/nature25753.

    Article  CAS  PubMed  Google Scholar 

  7. Nikolakopoulou A, Mavridis D, Furukawa TA, et al. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study. BMJ (Clin Res). 2018;360:k585. https://doi.org/10.1136/bmj.k585.

    Article  PubMed Central  Google Scholar 

  8. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7:16. https://doi.org/10.1186/1472-6947-7-16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bettany-Saltikov J. How to do a systematic literature review in nursing: a step-by-step guide. Berkshire: McGraw-Hill Education; 2012.

    Google Scholar 

  10. Booth Andrew. Clear and present questions: formulating questions for evidence based practice. Library Hi Tech. 2006;24(3):355–68.

    Article  Google Scholar 

  11. Cooke A, Smith D, Booth A. Beyond PICO: the SPIDER tool for qualitative evidence synthesis. Qual Health Res. 2012;22(10):1435–43. https://doi.org/10.1177/1049732312452938.

    Article  PubMed  Google Scholar 

  12. Haynes AS, Derrick GE, Redman S, et al. Identifying trustworthy experts: how do policymakers find and assess public health researchers worth consulting or collaborating with? PLoS ONE. 2012;7(3):e32665. https://doi.org/10.1371/journal.pone.0032665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oxman AD, Guyatt GH. The science of reviewing research. Ann NY Acad Sci. 1993;703:125–33 discussion 33–4.

    Article  CAS  Google Scholar 

  14. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev. 2017;6(1):245. https://doi.org/10.1186/s13643-017-0644-y.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rethlefsen ML, Farrell AM, Osterhaus Trzasko LC, Brigham TJ. Librarian co-authors correlated with higher quality reported search strategies in general internal medicine systematic reviews. J Clin Epidemiol. 2015;68(6):617–26. https://doi.org/10.1016/j.jclinepi.2014.11.025.

    Article  PubMed  Google Scholar 

  16. Glisic M, Kastrati N, Gonzalez-Jaramillo V, et al. Associations between phytoestrogens, glucose homeostasis, and risk of diabetes in women: a systematic review and meta-analysis. Adv Nutr. 2018;9(6):726–40. https://doi.org/10.1093/advances/nmy048.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Franco OH, Chowdhury R, Troup J, et al. Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA. 2016;315(23):2554–63. https://doi.org/10.1001/jama.2016.8012.

    Article  CAS  PubMed  Google Scholar 

  18. Elamin MB, Flynn DN, Bassler D, et al. Choice of data extraction tools for systematic reviews depends on resources and review complexity. J Clin Epidemiol. 2009;62(5):506–10. https://doi.org/10.1016/j.jclinepi.2008.10.016.

    Article  PubMed  Google Scholar 

  19. Bramer WM, Milic J, Mast F. Reviewing retrieved references for inclusion in systematic reviews using EndNote. J Med Libr Assoc. 2017;105(1):84–7. https://doi.org/10.5195/jmla.2017.111.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mourad Ouzzani HH, Fedorowicz Zbys, Elmagarmid Ahmed. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. DistillerSR EP, Ottawa, Canada, Available at https://www.evidencepartners.com/.

  22. Covidence. Cochrane Community. https://community.cochrane.org/help/tools-and-software/covidence. Accessed 3 Jul 2018.

  23. Higgins JPT, Savovic J, Page MJ, Hróbjartsson A, Boutron I, et al. A revised tool for assessing risk of bias in randomized trials. Cochrane Database Syst Rev. 2016;10(Suppl 1):29–31.

    Google Scholar 

  24. Higgins JP, Altman DG, Gotzsche PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clin Res Ed.). 2011;343:d5928. https://doi.org/10.1136/bmj.d5928.

    Article  Google Scholar 

  25. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clin Res Ed). 2016. https://doi.org/10.1136/bmj.i4919.

    Article  Google Scholar 

  26. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  Google Scholar 

  27. Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6. https://doi.org/10.7326/0003-4819-158-4-201302190-00009.

    Article  Google Scholar 

  28. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170(1):51–8. https://doi.org/10.7326/M18-1376.

    Article  PubMed  Google Scholar 

  29. Luhnen M, Prediger B, Neugebauer EAM, Mathes T. Systematic reviews of health economic evaluations: a protocol for a systematic review of characteristics and methods applied. Syst Rev. 2017;6(1):238. https://doi.org/10.1186/s13643-017-0639-8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodgers M, Sowden A, Petticrew M, et al. Testing methodological guidance on the conduct of narrative synthesis in systematic reviews: effectiveness of interventions to promote smoke alarm ownership and function. Evaluation. 2009;15(1):49–73. https://doi.org/10.1177/1356389008097871.

    Article  Google Scholar 

  31. Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ (Clin Res ed.). 2007;335(7626):914–6. https://doi.org/10.1136/bmj.39343.408449.80.

    Article  Google Scholar 

  32. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clin Res Ed.). 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  Google Scholar 

  33. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206. https://doi.org/10.1037/1082-989X.11.2.193.

    Article  PubMed  Google Scholar 

  34. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.

    Article  Google Scholar 

  35. Rucker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Methodol. 2008;8:79. https://doi.org/10.1186/1471-2288-8-79.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ioannidis JP, Haidich AB, Pappa M, et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA. 2001;286(7):821–30. https://doi.org/10.1001/jama.286.7.821.

    Article  CAS  PubMed  Google Scholar 

  37. Reeves BCDJ, Higgins JPT. Wells GA Chapter 13: Including non-randomized studies. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011]. Oxford: The Cochrane Collaboration; 2011.

    Google Scholar 

  38. Abraham NS, Byrne CJ, Young JM, Solomon MJ. Meta-analysis of well-designed nonrandomized comparative studies of surgical procedures is as good as randomized controlled trials. J Clin Epidemiol. 2010;63(3):238–45. https://doi.org/10.1016/j.jclinepi.2009.04.005.

    Article  PubMed  Google Scholar 

  39. Tonin FS, Rotta I, Mendes AM, Pontarolo R. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada). 2017;15(1):943. https://doi.org/10.18549/PharmPract.2017.01.943.

    Article  Google Scholar 

  40. Dias S, Caldwell DM. Network meta-analysis explained. Arch Dis Child Fetal Neonatal Ed. 2019;104(1):F8–12. https://doi.org/10.1136/archdischild-2018-315224.

    Article  PubMed  Google Scholar 

  41. Taneri PE, Kiefte-de Jong JC, Bramer WM, Daan NM, Franco OH, Muka T. Association of alcohol consumption with the onset of natural menopause: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(4):516–28. https://doi.org/10.1093/humupd/dmw013.

    Article  PubMed  Google Scholar 

  42. Nikolakopoulou A, Mavridis D, Salanti G. Demystifying fixed and random effects meta-analysis. Evid-Based Mental Health. 2014;17(2):53–7. https://doi.org/10.1136/eb-2014-101795.

    Article  Google Scholar 

  43. Harris RBM, Deeks J, et al. Metan: fixed-and random-effects meta-analysis. Stata J. 2008. https://doi.org/10.1177/1536867X0800800102.

    Article  Google Scholar 

  44. Chaimani A, Mavridis D, Salanti G. A hands-on practical tutorial on performing meta-analysis with Stata. Evid-Based Mental Health. 2014;17(4):111–6. https://doi.org/10.1136/eb-2014-101967.

    Article  Google Scholar 

  45. Higgins JPT GSe. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.handbook.cochrane.org.

  46. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559–73. https://doi.org/10.1002/sim.1187.

    Article  PubMed  Google Scholar 

  47. Marty Richardsona P, Doneganb S. Interpretation of subgroup analyses in systematic reviews: a tutorial. Clin Epidemiol Glob Health. 2019;7:192–8.

    Article  Google Scholar 

  48. Hannah R, Rothstein AJS, Borenstein M. Publication bias in meta-analysis. New York: Wiley; 2005.

    Google Scholar 

  49. Mavridis D, Salanti G. Exploring and accounting for publication bias in mental health: a brief overview of methods. Evid Based Ment Health. 2014;17(1):11–5. https://doi.org/10.1136/eb-2013-101700.

    Article  PubMed  Google Scholar 

  50. Lau J, Ioannidis JP, Terrin N, Schmid CH, Olkin I. The case of the misleading funnel plot. BMJ (Clin Res Ed). 2006;333(7568):597–600. https://doi.org/10.1136/bmj.333.7568.597.

    Article  Google Scholar 

  51. Sutton AJ, Higgins JP. Recent developments in meta-analysis. Stat Med. 2008;27(5):625–50. https://doi.org/10.1002/sim.2934.

    Article  PubMed  Google Scholar 

  52. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–57. https://doi.org/10.1002/sim.2380.

    Article  PubMed  Google Scholar 

  53. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  Google Scholar 

  54. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group, 2013. Available from guidelinedevelopment.org/handbook. 2013.

Download references

Acknowledgements

We would like to thank Georgia Salanti for the critical revision of the manuscript, Christopher Owen Ritter for English language editing, and 24-design.com for help with figures’ design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taulant Muka.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muka, T., Glisic, M., Milic, J. et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol 35, 49–60 (2020). https://doi.org/10.1007/s10654-019-00576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-019-00576-5

Keywords

Navigation