Skip to main content
Log in

Solitary kidney and risk of chronic kidney disease

  • RENAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The renal outcome of solitary kidney remains controversial. We examined the longitudinal association of congenital or acquired solitary kidney with the development of chronic kidney disease (CKD). A cohort study was performed involving 271,171 Korean men and women free of CKD at baseline who underwent a health screening program and who were followed annually or biennially for an average of 5.4 years. Solitary kidney was determined based on ultrasonographic findings. CKD was defined as an estimated glomerular filtration rate of < 60 ml/min/1.73 m2 and/or the presence of proteinuria in two or more consecutive visits. During 1,472,519.6 person-years of follow-up, 2989 participants developed CKD (incidence rate: 2.0 per 1000 person-years). After adjustment for potential confounders, the aHR (95% CIs) for incident CKD comparing solitary kidney to the control was 3.26 (1.63–6.54). In analyses of cause-specific solitary kidney, aHR (95% CIs) for CKD comparing unilateral nephrectomy and congenital solitary kidney to the control were 6.18 (2.31–16.49) and 2.22 (0.83–5.92), respectively. The association between solitary kidney and CKD was stronger in men. Having a solitary kidney was independently associated with an increased risk of CKD development. Therefore, preventive strategies for reducing the risk of CKD are required in individuals with a solitary kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet (London, England). 2013;382(9888):260–72. https://doi.org/10.1016/S0140-6736(13)60687-X.

    Article  Google Scholar 

  2. Mujais SK, Story K, Brouillette J, et al. Health-related quality of life in CKD Patients: correlates and evolution over time. Clin J Am Soci Nephrol CJASN. 2009;4(8):1293–301. https://doi.org/10.2215/CJN.05541008.

    Article  Google Scholar 

  3. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1(4 Pt 1):335–47.

    Article  CAS  Google Scholar 

  4. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249(3 Pt 2):F324–37. https://doi.org/10.1152/ajprenal.1985.249.3.F324.

    Article  CAS  PubMed  Google Scholar 

  5. Sanna-Cherchi S, Ravani P, Corbani V, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76(5):528–33. https://doi.org/10.1038/ki.2009.220.

    Article  PubMed  Google Scholar 

  6. Baudoin P, Provoost AP, Molenaar JC. Renal function up to 50 years after unilateral nephrectomy in childhood. Am J Kidney Dis. 1993;21(6):603–11.

    Article  CAS  Google Scholar 

  7. Argueso LR, Ritchey ML, Boyle ET Jr, Milliner DS, Bergstralh EJ, Kramer SA. Prognosis of children with solitary kidney after unilateral nephrectomy. J Urol. 1992;148(2 Pt 2):747–51.

    Article  CAS  Google Scholar 

  8. Argueso LR, Ritchey ML, Boyle ET Jr, Milliner DS, Bergstralh EJ, Kramer SA. Prognosis of patients with unilateral renal agenesis. Pediatric Nephrol (Berlin, Germany). 1992;6(5):412–6.

    Article  CAS  Google Scholar 

  9. Wikstad I, Celsi G, Larsson L, Herin P, Aperia A. Kidney function in adults born with unilateral renal agenesis or nephrectomized in childhood. Pediatric Nephrol (Berlin, Germany). 1988;2(2):177–82.

    Article  CAS  Google Scholar 

  10. Rugiu C, Oldrizzi L, Lupo A, et al. Clinical features of patients with solitary kidneys. Nephron. 1986;43(1):10–5.

    Article  CAS  Google Scholar 

  11. El-Agroudy AE, Sabry AA, Wafa EW, et al. Long-term follow-up of living kidney donors: a longitudinal study. BJU Int. 2007;100(6):1351–5. https://doi.org/10.1111/j.1464-410X.2007.07054.x.

    Article  PubMed  Google Scholar 

  12. Goldfarb DA, Matin SF, Braun WE, et al. Renal outcome 25 years after donor nephrectomy. J Urol. 2001;166(6):2043–7.

    Article  CAS  Google Scholar 

  13. Saran R, Marshall SM, Madsen R, Keavey P, Tapson JS. Long-term follow-up of kidney donors: a longitudinal study. Nephrol Dial Transplant. 1997;12(8):1615–21.

    Article  CAS  Google Scholar 

  14. Najarian JS, Chavers BM, McHugh LE, Matas AJ. 20 years or more of follow-up of living kidney donors. Lancet (London, England). 1992;340(8823):807–10.

    Article  CAS  Google Scholar 

  15. Fournier C, Pallet N, Cherqaoui Z, et al. Very long-term follow-up of living kidney donors. Transpl Int. 2012;25(4):385–90. https://doi.org/10.1111/j.1432-2277.2012.01439.x.

    Article  CAS  PubMed  Google Scholar 

  16. Narkun-Burgess DM, Nolan CR, Norman JE, Page WF, Miller PL, Meyer TW. Forty-five year follow-up after uninephrectomy. Kidney Int. 1993;43(5):1110–5.

    Article  CAS  Google Scholar 

  17. Chang Y, Ryu S, Choi Y, et al. Metabolically healthy obesity and development of chronic kidney disease: a cohort study. Ann Intern Med. 2016;164(5):305–12. https://doi.org/10.7326/M15-1323.

    Article  PubMed  Google Scholar 

  18. Chang Y, Kim BK, Yun KE, et al. Metabolically-healthy obesity and coronary artery calcification. J Am Coll Cardiol. 2014;63(24):2679–86. https://doi.org/10.1016/j.jacc.2014.03.042.

    Article  PubMed  Google Scholar 

  19. Ryu S, Chang Y, Choi Y, et al. Age at menarche and non-alcoholic fatty liver disease. J Hepatol. 2015;62(5):1164–70. https://doi.org/10.1016/j.jhep.2014.11.041.

    Article  PubMed  Google Scholar 

  20. World Health Organization, Regional Office for the Western Pacific. The Asia-Pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia; 2000.

  21. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  Google Scholar 

  22. Levey AS, Coresh J, Greene T, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53(4):766–72. https://doi.org/10.1373/clinchem.2006.077180.

    Article  CAS  PubMed  Google Scholar 

  23. Matsushita K, Mahmoodi BK, Woodward M, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307(18):1941–51. https://doi.org/10.1001/jama.2012.3954.

    Article  CAS  PubMed  Google Scholar 

  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  Google Scholar 

  25. Royston P, Parmar MK. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. 2002;21(15):2175–97. https://doi.org/10.1002/sim.1203.

    Article  PubMed  Google Scholar 

  26. Sinn DH, Kang D, Chang Y, et al. Non-alcoholic fatty liver disease and progression of coronary artery calcium score: a retrospective cohort study. Gut. 2017;66(2):323–9. https://doi.org/10.1136/gutjnl-2016-311854.

    Article  CAS  PubMed  Google Scholar 

  27. Hayslett JP. Functional adaptation to reduction in renal mass. Physiol Rev. 1979;59(1):137–64. https://doi.org/10.1152/physrev.1979.59.1.137.

    Article  CAS  PubMed  Google Scholar 

  28. Dicker SE, Shirley DG. Mechanism of compensatory renal hypertrophy. J Physiol. 1971;219(3):507–23.

    Article  CAS  Google Scholar 

  29. Brenner BM, Mackenzie HS. Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl. 1997;63:S124–7.

    CAS  PubMed  Google Scholar 

  30. Seeman T, Patzer L, John U, et al. Blood pressure, renal function, and proteinuria in children with unilateral renal agenesis. Kidney Blood Press Res. 2006;29(4):210–5. https://doi.org/10.1159/000095735.

    Article  PubMed  Google Scholar 

  31. Higashihara E, Horie S, Takeuchi T, Nutahara K, Aso Y. Long-term consequence of nephrectomy. J Urol. 1990;143(2):239–43.

    Article  CAS  Google Scholar 

  32. Smith S, Laprad P, Grantham J. Long-term effect of uninephrectomy on serum creatinine concentration and arterial blood pressure. Am J Kidney Dis. 1985;6(3):143–8.

    Article  CAS  Google Scholar 

  33. Robitaille P, Mongeau JG, Lortie L, Sinnassamy P. Long-term follow-up of patients who underwent unilateral nephrectomy in childhood. Lancet (London, England). 1985;1(8441):1297–9.

    Article  CAS  Google Scholar 

  34. Maggiore U, Budde K, Heemann U, et al. Long-term risks of kidney living donation: review and position paper by the ERA-EDTA DESCARTES working group. Nephrol Dial Transplant. 2017;32(2):216–23. https://doi.org/10.1093/ndt/gfw429.

    Article  PubMed  Google Scholar 

  35. Ibrahim HN, Foley R, Tan L, et al. Long-term consequences of kidney donation. New Engl J Med. 2009;360(5):459–69. https://doi.org/10.1056/NEJMoa0804883.

    Article  CAS  PubMed  Google Scholar 

  36. Muzaale AD, Massie AB, Wang MC, et al. Risk of end-stage renal disease following live kidney donation. JAMA. 2014;311(6):579–86. https://doi.org/10.1001/jama.2013.285141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mjoen G, Hallan S, Hartmann A, et al. Long-term risks for kidney donors. Kidney Int. 2014;86(1):162–7. https://doi.org/10.1038/ki.2013.460.

    Article  PubMed  Google Scholar 

  38. Chung BH, Jung MH, Bae SH, et al. Changing donor source pattern for kidney transplantation over 40 years: a single-center experience. Korean J Internal Med. 2010;25(3):288–93. https://doi.org/10.3904/kjim.2010.25.3.288.

    Article  Google Scholar 

  39. Freedman BI, Volkova NV, Satko SG, et al. Population-based screening for family history of end-stage renal disease among incident dialysis patients. Am J Nephrol. 2005;25(6):529–35. https://doi.org/10.1159/000088491.

    Article  PubMed  Google Scholar 

  40. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the e-value. Ann Intern Med. 2017;167(4):268–74. https://doi.org/10.7326/m16-2607.

    Article  PubMed  Google Scholar 

  41. Abou Jaoude P, Dubourg L, Bacchetta J, Berthiller J, Ranchin B, Cochat P. Congenital versus acquired solitary kidney: is the difference relevant? Nephrol Dial Transplant. 2011;26(7):2188–94. https://doi.org/10.1093/ndt/gfq659.

    Article  PubMed  Google Scholar 

  42. Cherikh WS, Young CJ, Kramer BF, Taranto SE, Randall HB, Fan PY. Ethnic and gender related differences in the risk of end-stage renal disease after living kidney donation. Am J Transplant. 2011;11(8):1650–5. https://doi.org/10.1111/j.1600-6143.2011.03609.x.

    Article  CAS  PubMed  Google Scholar 

  43. Silbiger S, Neugarten J. Gender and human chronic renal disease. Gender Med. 2008;5(Suppl A):S3–10. https://doi.org/10.1016/j.genm.2008.03.002.

    Article  Google Scholar 

  44. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol JASN. 2000;11(2):319–29.

    CAS  PubMed  Google Scholar 

  45. Iseki K. Gender differences in chronic kidney disease. Kidney Int. 2008;74(4):415–7. https://doi.org/10.1038/ki.2008.261.

    Article  PubMed  Google Scholar 

  46. Gretz N, Zeier M, Geberth S, Strauch M, Ritz E. Is gender a determinant for evolution of renal failure? A study in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1989;14(3):178–83.

    Article  CAS  Google Scholar 

  47. Hopper J Jr, Trew PA, Biava CG. Membranous nephropathy: its relative benignity in women. Nephron. 1981;29(1–2):18–24.

    Article  Google Scholar 

  48. Zeier M, Gafter U, Ritz E. Renal function and renal disease in males or females–vive la petite difference. Nephrol Dial Transpl. 1998;13(9):2195–8.

    Article  CAS  Google Scholar 

  49. Yanes LL, Sartori-Valinotti JC, Reckelhoff JF. Sex steroids and renal disease: lessons from animal studies. Hypertension. 2008;51(4):976–81. https://doi.org/10.1161/HYPERTENSIONAHA.107.105767.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Research idea and study design: SK, YC, SR; data analysis/interpretation: SK, YC, YRL, YC, KEY, HSJ; statistical analysis: SR; supervision or mentorship: SR, YRL, YYH, KBL, KJJ, HS. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved. SR and YC take responsibility that this study has been reported honestly, accurately, and transparently; that no important aspects of the study have been omitted, and that any discrepancies from the study as planned have been explained.

Corresponding authors

Correspondence to Yoosoo Chang or Seungho Ryu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Chang, Y., Lee, Y.R. et al. Solitary kidney and risk of chronic kidney disease. Eur J Epidemiol 34, 879–888 (2019). https://doi.org/10.1007/s10654-019-00520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-019-00520-7

Keywords

Navigation