Skip to main content

Nutritional epidemiology: forest, trees and leaves

Abstract

Ioannidis has stated that the field of nutritional epidemiology has generated confusion and numerous implausible findings and is in need of radical reform. One of the reforms he proposes is to conduct analyses that take into account the "totality for all nutritional factors measured". This approach is based on isolating and reducing diet into numerous independent variables with little regard to prior knowledge or the interrelations among dietary components, and relying on a "discovery" approach. This method, akin to genomewide association studies (GWAS), would involve very large sample sizes, small associations, no prior knowledge, and multiple testing considerations. This method is contrary to the more traditional hypothesis generating and testing approach built on all types of evidence. This commentary will contrast how suitable these two approaches are to study diet and disease.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Trepanowski JF, Ioannidis JPA. Perspective: limiting dependence on nonrandomized studies and improving randomized trials in human nutrition research: why and how. Adv Nutr. 2018;9(4):367–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ioannidis JP. Implausible results in human nutrition research. BMJ. 2013;347:f6698.

    Article  PubMed  Google Scholar 

  3. 3.

    Ioannidis JPA. The challenge of reforming nutritional epidemiologic research. JAMA. 2018;320(10):969–70.

    Article  PubMed  Google Scholar 

  4. 4.

    Satija A, et al. Perspective: are large, simple trials the solution for nutrition research? Adv Nutr. 2018;9(4):378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Patel CJ, et al. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States national health and nutrition examination survey. Int J Epidemiol. 2013;42(6):1795–810.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Eaton SB, Konner M. Paleolithic nutrition. N Engl J Med. 1985;312:283–9.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract. 2010;25(6):594–602.

    Article  PubMed  Google Scholar 

  8. 8.

    Willett WC. Dietary fats and coronary heart disease. J Intern Med. 2012;272(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1345–422.

    Article  Google Scholar 

  10. 10.

    Satija A, et al. Understanding nutritional epidemiology and its role in policy. Adv Nutr. 2015;6(1):5–18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yuan C, et al. Relative validity of nutrient intakes assessed by questionnaire, 24-hour recalls, and diet records as compared with urinary recovery and plasma concentration biomarkers: findings for women. Am J Epidemiol. 2018;187(5):1051–63.

    Article  PubMed  Google Scholar 

  12. 12.

    Schwingshackl L, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73.

    CAS  PubMed  Google Scholar 

  13. 13.

    Filippini T, et al. The effect of potassium supplementation on blood pressure in hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2017;230:127–35.

    Article  PubMed  Google Scholar 

  14. 14.

    Gay HC, et al. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension. 2016;67(4):733–9.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Binia A, et al. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2015;33(8):1509–20.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Perez V, Chang ET. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr. 2014;5(6):712–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Appel LJ. The effects of dietary factors on blood pressure. Cardiol Clin. 2017;35(2):197–212.

    Article  PubMed  Google Scholar 

  18. 18.

    Aune D, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Aune D, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sacks FM, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–23.

    Article  PubMed  Google Scholar 

  21. 21.

    Hooper L, et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015;(6). p. CD011737.

  22. 22.

    Estruch R, et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Aune D, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):207.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Jakobsen MU, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89(5):1425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Estruch R, et al. Retraction and republication: primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med. 2018;378(25):2441–2.

    Article  PubMed  Google Scholar 

  26. 26.

    Howard BV, et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative randomized controlled dietary modification trial. JAMA. 2006;295(6):655–66.

    Article  CAS  Google Scholar 

  27. 27.

    de Lorgeril M, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9.

    Article  PubMed  Google Scholar 

  28. 28.

    Giovannucci E. A framework to understand diet, physical activity, body weight, and cancer risk. Cancer Causes Control. 2018;29(1):1–6.

    Article  PubMed  Google Scholar 

  29. 29.

    Fogelholm M, et al. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: a systematic literature review. Food Nutr Res. 2012;56:19103.

    Article  Google Scholar 

  30. 30.

    Swinburn BA, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14.

    Article  PubMed  Google Scholar 

  31. 31.

    Rodgers A, et al. Prevalence trends tell us what did not precipitate the US obesity epidemic. Lancet Public Health. 2018;3(4):e162–3.

    Article  Google Scholar 

  32. 32.

    Scarborough P, et al. Increased energy intake entirely accounts for increase in body weight in women but not in men in the UK between 1986 and 2000. Br J Nutr. 2011;105(9):1399–404.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Young LR, Nestle M. Expanding portion sizes in the US marketplace: implications for nutrition counseling. J Am Diet Assoc. 2003;103(2):231–4.

    Article  PubMed  Google Scholar 

  34. 34.

    Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Giovannucci E. An integrative approach for deciphering the causal associations of physical activity and cancer risk: the role of adiposity. J Natl Cancer Inst. 2018;110(9):935–41.

    Article  PubMed  Google Scholar 

  36. 36.

    Tabung FK, et al. Development and validation of an empirical dietary inflammatory index. J Nutr. 2016;146(8):1560–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Tabung FK, et al. Development and validation of empirical indices to assess the insulinaemic potential of diet and lifestyle. Br J Nutr. 2016;8:1–12.

    Google Scholar 

  38. 38.

    Tabung FK, et al. Association of dietary inflammatory potential with colorectal cancer risk in men and women. JAMA Oncol. 2018;4(3):366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tabung FK, et al. Association of dietary insulinemic potential and colorectal cancer risk in men and women. Am J Clin Nutr. 2018;108(2):363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Toivonen KI, et al. Folic acid supplementation during the preconception period: a systematic review and meta-analysis. Prev Med. 2018;114:1–17.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    He K, et al. Folate, vitamin B6, and B12 intakes in relation to risk of stroke among men. Stroke. 2004;35(1):169–74.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Bazzano LA, et al. Dietary intake of folate and risk of stroke in US men and women: NHANES I epidemiologic follow-up study. National Health and Nutrition Examination Survey. Stroke. 2002;33(5):1183–8.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Hankey GJ. B vitamins for stroke prevention. Stroke Vasc Neurol. 2018;3(2):51–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yang Q, et al. Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation. 2006;113(10):1335–43.

    Article  PubMed  Google Scholar 

  45. 45.

    Keum N, et al. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int J Cancer. 2014;135(8):1940–8.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Martineau AR, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wolsk HM, et al. Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: a combined analysis of two randomized controlled trials. PLoS ONE. 2017;12(10):e0186657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Machisio P, et al. Vitamin D supplementation reduces the risk of acute otitis media in otitis-prone children. Pediatr Infect Dis J. 2013;32(10):1055–60.

    Article  Google Scholar 

  49. 49.

    Keum N, Giovannucci E. Vitamin D supplements and cancer incidence and mortality: a meta-analysis. Br J Cancer. 2014;111(5):976–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Manson JE, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Mokry LE, et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 2015;12(8):e1001866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Munger KL, et al. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward Giovannucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giovannucci, E. Nutritional epidemiology: forest, trees and leaves. Eur J Epidemiol 34, 319–325 (2019). https://doi.org/10.1007/s10654-019-00488-4

Download citation

Keyword

  • Nutrition
  • Epidemiology
  • Cardiovascular diseases
  • Diet