Skip to main content


Log in

Two denominators for one numerator: the example of neonatal mortality

  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript


Preterm delivery is one of the strongest predictors of neonatal mortality. A given exposure may increase neonatal mortality directly, or indirectly by increasing the risk of preterm birth. Efforts to assess these direct and indirect effects are complicated by the fact that neonatal mortality arises from two distinct denominators (i.e. two risk sets). One risk set comprises fetuses, susceptible to intrauterine pathologies (such as malformations or infection), which can result in neonatal death. The other risk set comprises live births, who (unlike fetuses) are susceptible to problems of immaturity and complications of delivery. In practice, fetal and neonatal sources of neonatal mortality cannot be separated—not only because of incomplete information, but because risks from both sources can act on the same newborn. We use simulations to assess the repercussions of this structural problem. We first construct a scenario in which fetal and neonatal factors contribute separately to neonatal mortality. We introduce an exposure that increases risk of preterm birth (and thus neonatal mortality) without affecting the two baseline sets of neonatal mortality risk. We then calculate the apparent gestational-age-specific mortality for exposed and unexposed newborns, using as the denominator either fetuses or live births at a given gestational age. If conditioning on gestational age successfully blocked the mediating effect of preterm delivery, then exposure would have no effect on gestational-age-specific risk. Instead, we find apparent exposure effects with either denominator. Except for prediction, neither denominator provides a meaningful way to define gestational-age-specific neonatal mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Wang H, Liddell CA, Coates MM, Mooney MD, Levitz CE, Schumacher AE, et al. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9947):957–79.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Linked Birth/Infant Death Records 2007–2013, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program, on CDC WONDER On-line Database [database on the Internet] 2015. Accessed 28 Aug 2015.

  3. Wilcox AJ, Weinberg CR, Basso O. On the pitfalls of adjusting for gestational age at birth. Am J Epidemiol. 2011;174(9):1062–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kramer MS, Zhang X, Platt RW. Analyzing risks of adverse pregnancy outcomes. Am J Epidemiol. 2014;179(3):361–7.

    Article  PubMed  Google Scholar 

  5. Platt RW, Joseph KS, Ananth CV, Grondines J, Abrahamowicz M, Kramer MS. A proportional hazards model with time-dependent covariates and time-varying effects for analysis of fetal and infant death. Am J Epidemiol. 2004;160(3):199–206.

    Article  PubMed  Google Scholar 

  6. VanderWeele TJ, Mumford SL, Schisterman EF. Conditioning on intermediates in perinatal epidemiology. Epidemiology. 2012;23(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Basso O. Implications of using a fetuses-at-risk approach when fetuses are not at risk. Paediatr Perinat Epidemiol. 2016;30(1):3–10.

    Article  PubMed  Google Scholar 

  8. Joseph KS. Incidence-based measures of birth, growth restriction, and death can free perinatal epidemiology from erroneous concepts of risk. J Clin Epidemiol. 2004;57(9):889–97.

    Article  PubMed  CAS  Google Scholar 

  9. Wilcox AJ, Weinberg CR, Basso O, Harmon QE. Re: “Analyzing risks of adverse pregnancy outcomes”. Am J Epidemiol. 2015;181(3):218.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ananth CV, Schisterman EF. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics. Am J Obstet Gynecol. 2017;217(2):167–75.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen XK, Wen SW, Smith G, Yang Q, Walker M. Pregnancy-induced hypertension is associated with lower infant mortality in preterm singletons. BJOG. 2006;113(5):544–51.

    Article  PubMed  CAS  Google Scholar 

  12. Papiernik E, Alexander GR, Paneth N. Racial differences in pregnancy duration and its implications for perinatal care. Med Hypotheses. 1990;33(3):181–6.

    Article  PubMed  CAS  Google Scholar 

  13. Cheung YB, Yip P, Karlberg J. Mortality of twins and singletons by gestational age: a varying-coefficient approach. Am J Epidemiol. 2000;152(12):1107–16.

    Article  PubMed  CAS  Google Scholar 

  14. Ananth CV, Smulian JC, Vintzileos AM. The effect of placenta previa on neonatal mortality: a population-based study in the United States, 1989 through 1997. Am J Obstet Gynecol. 2003;188(5):1299–304.

    Article  PubMed  Google Scholar 

  15. Naeye RL. Causes of perinatal mortality in the US Collaborative Perinatal Project. JAMA-J Am Med Assoc. 1977;238(3):228–9.

    Article  CAS  Google Scholar 

  16. Silver RM, Varner MW, Reddy U, Goldenberg R, Pinar H, Conway D, et al. Work-up of stillbirth: a review of the evidence. Am J Obstet Gynecol. 2007;196(5):433–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Smith GCS. Quantifying the risk of different types of perinatal death in relation to gestational age: researchers at risk of causing confusion. Paediatr Perinat Epidemiol. 2016;30(1):18–9.

    Article  PubMed  Google Scholar 

  18. The Stillbirth Collaborative Network Writing Group. Causes of death among stillbirths. JAMA J Am Med Assoc. 2011;306(22):2459–68.

    Article  Google Scholar 

  19. Wou K, Ouellet MP, Chen MF, Brown RN. Comparison of the aetiology of stillbirth over five decades in a single centre: a retrospective study. BMJ Open. 2014;4(6):e004635.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoyert DL, Gregory EC. Cause of fetal death: data from the fetal death report, 2014. Natl Vital Stat Rep. 2016;65(7):1–25.

    PubMed  Google Scholar 

  21. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. Natl Vital Stat Rep. 2009;57(14):1–134.

    PubMed  Google Scholar 

  22. Birth Cohort Linked Birth-Infant Death Data Files [database on the Internet] 2006. Accessed 10 July 2015.

  23. Fetal Death Data File [database on the Internet] 2006. Accessed 16 July 2015.

  24. Basso O, Wilcox A. Mortality risk among preterm babies: immaturity versus underlying pathology. Epidemiology. 2010;21(4):521–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Talge NM, Mudd LM, Sikorskii A, Basso O. United States birth weight reference corrected for implausible gestational age estimates. Pediatrics. 2014;133(5):844–53.

    Article  PubMed  Google Scholar 

  26. Yudkin PL, Wood L, Redman CW. Risk of unexplained stillbirth at different gestational ages. Lancet. 1987;1(8543):1192–4.

    Article  PubMed  CAS  Google Scholar 

  27. Sibai BM, Caritis SN, Hauth JC, MacPherson C, VanDorsten JP, Klebanoff M, et al. Preterm delivery in women with pregestational diabetes mellitus or chronic hypertension relative to women with uncomplicated pregnancies. The National Institute of Child Health and Human Development Maternal–Fetal Medicine Units Network. Am J Obstet Gynecol. 2000;183(6):1520–4.

    Article  PubMed  CAS  Google Scholar 

  28. Feig DS, Hwee J, Shah BR, Booth GL, Bierman AS, Lipscombe LL. Trends in incidence of diabetes in pregnancy and serious perinatal outcomes: a large, population-based study in Ontario, Canada, 1996–2010. Diabetes Care. 2014;37(6):1590–6.

    Article  PubMed  Google Scholar 

  29. Knorr S, Stochholm K, Vlachova Z, Bytoft B, Clausen TD, Jensen RB, et al. multisystem morbidity and mortality in offspring of women with type 1 diabetes (the EPICOM study): a register-based prospective cohort study. Diabetes Care. 2015;38(5):821–6.

    Article  PubMed  Google Scholar 

  30. Basso O, Wilcox AJ. Might rare factors account for most of the mortality of preterm babies? Epidemiology. 2011;22(3):320–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Platt RW. The fetuses-at-risk approach: an evolving paradigm. In: Louis GB, Platt RW, editors. Reproductive and perinatal epidemiology. Oxford: Oxford University Press; 2011.

    Google Scholar 

  32. Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359(3):262–73.

    Article  PubMed  CAS  Google Scholar 

  33. Lisonkova S, Paré E, Joseph K. Does advanced maternal age confer a survival advantage to infants born at early gestation? BMC Pregnancy Childbirth. 2013;13(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ananth CV, VanderWeele TJ. Placental abruption and perinatal mortality with preterm delivery as a mediator: disentangling direct and indirect effects. Am J Epidemiol. 2011;174(1):99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Auger N, Naimi AI, Fraser WD, Healy-Profitos J, Luo ZC, Nuyt AM, et al. Three alternative methods to resolve paradoxical associations of exposures before term. Eur J Epidemiol. 2016;31(10):1011–9.

    Article  PubMed  Google Scholar 

  36. VanderWeele TJ. Commentary: resolutions of the birthweight paradox: competing explanations and analytical insights. Int J Epidemiol. 2014;43(5):1368–73.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors gratefully acknowledge the comments on earlier drafts by Dr. Donna Baird, Dr. David Umbach, and anonymous reviewers.


This research has been supported in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Quaker E. Harmon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Publicly available data with no identifying details were used. For this type of study formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Supplementary material 2 (XLSX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmon, Q.E., Basso, O., Weinberg, C.R. et al. Two denominators for one numerator: the example of neonatal mortality. Eur J Epidemiol 33, 523–530 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: