Skip to main content
Log in

Patterning of individual heterogeneity in body mass index: evidence from 57 low- and middle-income countries

  • RISK FACTORS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Modeling variation at population level has become increasingly valued, but no clear application exists for modeling differential variation in health between individuals within a given population. We applied Goldstein’s method (in: Everrit, Howell (eds) Encyclopedia of statistics in behavioral science, Wiley, Hoboken, 2005) to model individual heterogeneity in body mass index (BMI) as a function of basic sociodemographic characteristics, each independently and jointly. Our analytic sample consisted of 643,315 non-pregnant women aged 15–49 years pooled from the latest Demographic Health Surveys (rounds V, VI, or VII; years 2005–2014) across 57 low- and middle-income countries. Individual variability in BMI ranged from 9.8 (95% CI: 9.8, 9.9) for the youngest to 23.2 (95% CI: 22.9, 23.5) for the oldest age group; 14.2 (95% CI: 14.1, 14.3) for those with no formal education to 19.7 (95% CI: 19.5, 19.9) for those who have completed higher education; and 13.6 (95% CI: 13.5, 13.7) for the poorest quintile to 20.1 (95% CI: 20.0, 20.2) for the wealthiest quintile group. Moreover, variability in BMI by age was also different for different socioeconomic groups. Empirically testing the fundamental assumption of constant variance and identifying groups with systematically large differentials in health experiences have important implications for reducing health disparity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Subramanian S. The relevance of multilevel statistical methods for identifying causal neighborhood effects. Soc Sci Med. 2004;58(10):1961–7.

    Article  PubMed  CAS  Google Scholar 

  2. Frieden TR. A framework for public health action: the health impact pyramid. Am J Public Health. 2010;100(4):590–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marmot M, Friel S, Bell R, Houweling TA, Taylor S. Health CoSDo. Closing the gap in a generation: health equity through action on the social determinants of health. The Lancet. 2008;372(9650):1661–9.

    Article  Google Scholar 

  4. Arcaya MC, Tucker-Seeley RD, Kim R, Schnake-Mahl A, So M, Subramanian S. Research on neighborhood effects on health in the United States: a systematic review of study characteristics. Soc Sci Med. 2016;168:16–29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Merlo J. Invited commentary: multilevel analysis of individual heterogeneity—a fundamental critique of the current probabilistic risk factor epidemiology. Am J Epidemiol. 2014;180(2):208–12.

    Article  PubMed  Google Scholar 

  6. Keyes K, Galea S. What matters most: quantifying an epidemiology of consequence. Ann Epidemiol. 2015;25(5):305–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Browne WJ, Draper D, Goldstein H, Rasbash J. Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation. Comput Stat Data Anal. 2002;39(2):203–25.

    Article  Google Scholar 

  8. Goldstein H. Heteroscedasticity and complex variation. In: Everrit B, Howell D, editors. Encyclopedia of statistics in behavioral science. Hoboken: Wiley; 2005. p. 223–32.

    Google Scholar 

  9. Razak F, Smith GD, Subramanian S. The idea of uniform change: is it time to revisit a central tenet of Rose’s “Strategy of Preventive Medicine”? Am J Clin Nutr. 2016;104(6):1497–507.

    Article  PubMed  CAS  Google Scholar 

  10. Krishna A, Razak F, Lebel A, Smith GD, Subramanian S. Trends in group inequalities and interindividual inequalities in BMI in the United States, 1993–2012. Am J Clin Nutr. 2015;101(3):598–605.

    Article  PubMed  CAS  Google Scholar 

  11. Razak F, Corsi DJ, Subramanian SV. Change in the body mass index distribution for women: analysis of surveys from 37 low- and middle-income countries. PLoS Med. 2013;10(1):e1001367. https://doi.org/10.1371/journal.pmed.1001367.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vaezghasemi M, Razak F, Ng N, Subramanian S. Inter-individual inequality in BMI: an analysis of Indonesian Family Life Surveys (1993–2007). SSM-Popul Health. 2016;2:876–88.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Corsi DJ, Neuman M, Finlay JE, Subramanian S. Demographic and health surveys: a profile. Int J Epidemiol. 2012;41(6):1602–13.

    Article  PubMed  Google Scholar 

  14. MEASUREDHS. DHS Overview. http://www.measuredhs.com/What-We-Do/Survey-Types/DHS.cfm. Accessed 3 Dec 2017.

  15. Rutstein SO. The DHS wealth index: approaches for rural and urban areas. Washington, DC: Macro International Inc; 2008.

  16. Vrieze SI. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods. 2012;17(2):228.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ball K, Crawford D. Socioeconomic status and weight change in adults: a review. Soc Sci Med. 2005;60(9):1987–2010.

    Article  PubMed  Google Scholar 

  18. Hoffman L. Multilevel models for examining individual differences in within-person variation and covariation over time. Multivar Behav Res. 2007;42(4):609–29.

    Article  Google Scholar 

  19. Vallejo G, Fernández P, Cuesta M, Livacic-Rojas PE. Effects of modeling the heterogeneity on inferences drawn from multilevel designs. Multivar Behav Res. 2015;50(1):75–90.

    Article  Google Scholar 

  20. Dedrick RF, Ferron JM, Hess MR, Hogarty KY, Kromrey JD, Lang TR, et al. Multilevel modeling: a review of methodological issues and applications. Rev Educ Res. 2009;79(1):69–102.

    Article  Google Scholar 

  21. Raudenbush SW, Bryk AS. Hierarchical linear models: applications and data analysis methods. Newcastle upon Tyne: Sage; 2002.

    Google Scholar 

  22. Lewontin R, Levins R. Schmalhausen’s law. Capital Nat Soc. 2000;11(4):103–8.

    Article  Google Scholar 

  23. Schwartz S, Diez-Roux R. Commentary: causes of incidence and causes of cases—a Durkheimian perspective on Rose. Int J Epidemiol. 2001;30(3):435–9.

    Article  PubMed  CAS  Google Scholar 

  24. Longford NT. Selection bias and treatment heterogeneity in clinical trials. Stat Med. 1999;18(12):1467–74.

    Article  PubMed  CAS  Google Scholar 

  25. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102.

    Article  PubMed  Google Scholar 

  26. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;2011(364):2392–404.

    Article  Google Scholar 

  27. Lynch JW, Kaplan GA, Salonen JT. Why do poor people behave poorly? Variation in adult health behaviours and psychosocial characteristics by stages of the socioeconomic lifecourse. Soc Sci Med. 1997;44(6):809–19.

    Article  PubMed  CAS  Google Scholar 

  28. Duncan C, Jones K. Using multilevel models to model heterogeneity: potential and pitfalls. Geogr Anal. 2000;32(4):279–305.

    Article  Google Scholar 

  29. Himmelstein DU, Levins R, Woolhandler S. Beyond our means: patterns of variability of physiological traits. Int J Health Serv. 1990;20(1):115–24.

    Article  PubMed  CAS  Google Scholar 

  30. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004;159(9):882–90.

    Article  PubMed  Google Scholar 

  31. Rockhill B. Theorizing about causes at the individual level while estimating effects at the population level: implications for prevention. Epidemiology. 2005;16(1):124–9.

    Article  PubMed  Google Scholar 

  32. Merlo J, Asplund K, Lynch J, Råstam L, Dobson A. Population effects on individual systolic blood pressure: a multilevel analysis of the World Health Organization MONICA Project. Am J Epidemiol. 2004;159(12):1168–79.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Venkata Subramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical review

The study was reviewed by Harvard T. H. Chan School of Public Health Institutional Review Board and was considered exempt from full review because the study was based on an anonymous public use data set with no identifiable information on the study participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, R., Kawachi, I., Coull, B.A. et al. Patterning of individual heterogeneity in body mass index: evidence from 57 low- and middle-income countries. Eur J Epidemiol 33, 741–750 (2018). https://doi.org/10.1007/s10654-018-0355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-018-0355-2

Keywords

Navigation