Skip to main content

Advertisement

Log in

Advanced paternal age and stillbirth rate: a nationwide register-based cohort study of 944,031 pregnancies in Denmark

  • PERINATAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Advanced paternal age has been associated with a variety of rare conditions and diseases of great public health impact. An increased number of de novo point mutations in sperm with increasing age have been suggested as a mechanism, which would likely also affect fetal viability. We examined the association between paternal age and stillbirth rate in a large nationwide cohort. We identified all pregnancies in Denmark from 1994 to 2010 carried to a gestational age of at least 22 completed weeks (n = 944,031) as registered in national registers and linked to individual register data about the parents. The hazard ratio of stillbirth according to paternal age was estimated, adjusted for maternal age in 1-year categories, year of outcome, and additionally parental educational levels. The relative rate of stillbirth (n = 4946) according to paternal age was found to be J-shaped with the highest hazard ratio for fathers aged more than 40 years when paternal age was modelled using restricted cubic splines. When modelled categorically, the adjusted hazard ratios of stillbirth were as follows: <25, 1.16 (95% confidence interval, CI 1.01–1.34); 25–29, 1.03 (95% CI 0.95–1.11); 35–39, 1.16 (95% CI 1.07–1.26); 40–44, 1.41 (95% CI 1.26–1.59); 45–49, 1.20 (95% CI 0.97–1.49); 50+, 1.58 (95% CI 1.18–2.11), compared with fathers aged 30–34 years. These estimates attenuated slightly when further adjusted for parental education. Our study showed that paternal age was associated with the relative rate of stillbirth in a J-shaped manner with the highest hazard ratios among fathers aged more than 40 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1:40–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;. doi:10.1038/nature11396.

    Google Scholar 

  3. Goriely A, McVean GA, Rojmyr M, Ingemarsson B, Wilkie AO. Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science. 2003;. doi:10.1126/science.1087262.

    PubMed  Google Scholar 

  4. Moloney DM, Slaney SF, Oldridge M, Wall SA, Sahlin P, Stenman G, et al. Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet. 1996;13:48–53.

    Article  CAS  PubMed  Google Scholar 

  5. Tolarova MM, Harris JA, Ordway DE, Vargervik K. Birth prevalence, mutation rate, sex ratio, parents’ age, and ethnicity in Apert syndrome. Am J Med Genet. 1997;72:394–8.

    Article  CAS  PubMed  Google Scholar 

  6. Waller DK, Correa A, Vo TM, Wang Y, Hobbs C, Langlois PH, et al. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A. 2008;146A:2385–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wilkin DJ, Szabo JK, Cameron R, Henderson S, Bellus GA, Mack ML, et al. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet. 1998;63:711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoon SR, Qin J, Glaser RL, Jabs EW, Wexler NS, Sokol R, et al. The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genet. 2009;5:e1000558.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arbeev KG, Hunt SC, Kimura M, Aviv A, Yashin AI. Leukocyte telomere length, breast cancer risk in the offspring: the relations with father’s age at birth. Mech Ageing Dev. 2011;132:149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Byrne M, Agerbo E, Ewald H, Eaton WW, Mortensen PB. Parental age and risk of schizophrenia: a case-control study. Arch Gen Psychiatry. 2003;60:673–8.

    Article  PubMed  Google Scholar 

  11. Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Yoo KY, et al. Association of paternal age at birth and the risk of breast cancer in offspring: a case control study. BMC Cancer. 2005;5:143.

    Article  PubMed  PubMed Central  Google Scholar 

  12. D’Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjolander A, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71:432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hemminki K, Kyyronen P, Vaittinen P. Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology. 1999;10:271–5.

    Article  CAS  PubMed  Google Scholar 

  14. Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011;16:1203–12.

    Article  CAS  PubMed  Google Scholar 

  15. Idring S, Magnusson C, Lundberg M, Ek M, Rai D, Svensson AC, et al. Parental age and the risk of autism spectrum disorders: findings from a Swedish population-based cohort. Int J Epidemiol. 2014;43:107–15.

    Article  PubMed  Google Scholar 

  16. Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58:361–7.

    Article  CAS  PubMed  Google Scholar 

  17. McGrath JJ, Petersen L, Agerbo E, Mors O, Mortensen PB, Pedersen CB. A comprehensive assessment of parental age and psychiatric disorders. JAMA Psychiatry. 2014;71:301–9.

    Article  PubMed  Google Scholar 

  18. Miller B, Messias E, Miettunen J, Alaräisänen A, Järvelin MR, Koponen H, et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr Bull. 2011;37:1039–47.

    Article  PubMed  Google Scholar 

  19. Sipos A. Paternal age and schizophrenia: a population based cohort study. BMJ. 2004;329:1070.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yip BH, Pawitan Y, Czene K. Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol. 2006;35:1495–503.

    Article  PubMed  Google Scholar 

  21. Zhang Y, Kreger BE, Dorgan JF, Cupples LA, Myers RH, Splansky GL, et al. Parental age at child’s birth and son’s risk of prostate cancer the framingham study. Am J Epidemiol. 1999;150:1208–12.

    Article  CAS  PubMed  Google Scholar 

  22. Urhoj SK, Jespersen LN, Nissen M, Mortensen LH, Nybo Andersen AM. Advanced paternal age and mortality of offspring under 5 years of age: a register-based cohort study. Hum Reprod. 2014;29:343–50.

    Article  CAS  PubMed  Google Scholar 

  23. de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17:1649–56.

    Article  PubMed  Google Scholar 

  24. Kleinhaus K, Perrin M, Friedlander Y, Paltiel O, Malaspina D, Harlap S. Paternal age and spontaneous abortion. Obstet Gynecol. 2006;108:369–77.

    Article  CAS  PubMed  Google Scholar 

  25. Kuhnert B, Nieschlag E. Reproductive functions of the ageing male. Hum Reprod Update. 2004;10:327–39.

    Article  PubMed  Google Scholar 

  26. Nybo Andersen A-M, Hansen KD, Andersen PK, Davey Smith G. Advanced paternal age and risk of fetal death: a cohort study. Am J Epidemiol. 2004;160:1214–22.

    Article  PubMed  Google Scholar 

  27. Sartorius GA, Nieschlag E. Paternal age and reproduction. Hum Reprod Update. 2010;16:65–79.

    Article  PubMed  Google Scholar 

  28. Shah PS. Paternal factors and low birthweight, preterm, and small for gestational age births: a systematic review. Am J Obstet Gynecol. 2010;202:103–23.

    Article  PubMed  Google Scholar 

  29. Slama R, Bouyer J, Windham G, Fenster L, Werwatz A, Swan SH. Influence of paternal age on the risk of spontaneous abortion. Am J Epidemiol. 2005;161:816–23.

    Article  PubMed  Google Scholar 

  30. Alio AP, Salihu HM, McIntosh C, August EM, Weldeselasse H, Sanchez E, et al. The effect of paternal age on fetal birth outcomes. Am J Mens Health. 2012;6(5):427–35.

    Article  PubMed  Google Scholar 

  31. Astolfi P, De PA, Zonta LA. Late paternity and stillbirth risk. Hum Reprod. 2004;19:2497–501.

    Article  CAS  PubMed  Google Scholar 

  32. Selvin S, Garfinkel J. Paternal age, maternal age and birth order and the risk of a fetal loss. Hum Biol. 1976;48:223–30.

    CAS  PubMed  Google Scholar 

  33. Yerushalmy J. Age of father and survival of offspring. Hum Biol. 1939;11:342–56.

    Google Scholar 

  34. Greenland S. Dose-response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology. 1995;6:356–65.

    Article  CAS  PubMed  Google Scholar 

  35. Flenady V, Koopmans L, Middleton P, Froen JF, Smith GC, Gibbons K, et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet. 2011;377:1331–40.

    Article  PubMed  Google Scholar 

  36. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012;41:861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen QQ, Yan M, Cao Z, Li X, Zhang YY, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2015;. doi:10.1126/science.aad7977.

    Google Scholar 

  38. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2015;. doi:10.1126/science.aad6780.

    Google Scholar 

  39. Schmidt L, Sobotka T, Bentzen JG, Nyboe AA. Demographic and medical consequences of the postponement of parenthood. Hum Reprod Update. 2012;18:29–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Department of Public Health, University of Copenhagen, a Ph.D. grant from the Faculty of Health and Medical Sciences, University of Copenhagen, and the Medical Research Council [grant number MC_UU_12013/1-9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine Kjaer Urhoj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Statistics Denmark linked information from the registers using a unique identification number which was concealed before releasing the data for analysis, complying with privacy protection rules. The study was approved by the Danish data protection agency. No additional ethical approval or informed consent was acquired according to Danish legislation, since this study used routine register data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urhoj, S.K., Andersen, P.K., Mortensen, L.H. et al. Advanced paternal age and stillbirth rate: a nationwide register-based cohort study of 944,031 pregnancies in Denmark. Eur J Epidemiol 32, 227–234 (2017). https://doi.org/10.1007/s10654-017-0237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-017-0237-z

Keywords

Navigation