Skip to main content
Log in

For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates

  • ESSAY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

I present an overview of two methods controversies that are central to analysis and inference: That surrounding causal modeling as reflected in the “causal inference” movement, and that surrounding null bias in statistical methods as applied to causal questions. Human factors have expanded what might otherwise have been narrow technical discussions into broad philosophical debates. There seem to be misconceptions about the requirements and capabilities of formal methods, especially in notions that certain assumptions or models (such as potential-outcome models) are necessary or sufficient for valid inference. I argue that, once these misconceptions are removed, most elements of the opposing views can be reconciled. The chief problem of causal inference then becomes one of how to teach sound use of formal methods (such as causal modeling, statistical inference, and sensitivity analysis), and how to apply them without generating the overconfidence and misinterpretations that have ruined so many statistical practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The same comment may well apply to physical sciences, but those are far outside my scope.

  2. In these papers, “identification” has its strict statistical meaning of estimability rather than its more recent epidemiologic meaning of qualitative identification, as in Schwartz et al. (2016) and VanderWeele (2016).

  3. Holland called this RPOA “Rubin’s causal model,” even though such models had long been in use in experimental analysis (e.g., Neyman 1923; Welch 1937; Wilk 1955). Rubin’s seminal contributions extended the models to statistical analysis of nonexperiments (Rubin 1990).

  4. Apart from invertible equation systems, which do not exist in realistic models for health and social phenomena.

  5. In a common notation, knowing the treatment indicator X is positively associated with the outcome indicator Y0 under X=0 yet unassociated with the observed outcome Yobs leads us to infer that Y1 > Y0 for some observed unit.

  6. In terms of potential outcomes Yx indexed by drug dose x, we would infer that the unobserved variable Y40 is sometimes greater than Y0 even though Pr(X=40) = 0.

  7. In notation: With Yx the potential outcome and Yobs its measurement, we can have Yobs ≠ Yx yet still infer that Y1 ≠ Y0 for some unit.

  8. Adding confusion, the term ‘consistency' is already well established for unrelated concepts such as estimator convergence and freedom from contradiction.

  9. Even more startling is that temporality (cause preceding effect) is not necessary in some counterfactual accounts of causation (Price 1996).

  10. In logic this syntactical structure is called a theory, and the interpretations that follow that structure are called models of the theory. I instead call this structure a model, which I think more in line with common usage in statistics and applied sciences.

  11. This fact is one way of seeing why quantum physics has defied classical causal explanations: Robins et al. (2015) show that potential-outcome models obey Bell’s inequality, whose observed violations conflict with local definiteness (local realism, local hidden variables) and local causal diagrams (Gill 2014).

  12. Notably, similar concerns about untestable mathematical theory arise in hard sciences like physics (Ellis and Silk 2014).

  13. When in addition to the causal graph we can assume faithfulness (open paths imply association), the number of logically possible structures is reduced drastically – to the point that a certain limited type of conditional causal identification can be enabled (Spirtes et al. 2001; Robins et al. 2003).

  14. One measure of the evidence against a model (whether causal or not) supplied by the P-value p from a test of its fit is the binary information or surprisal −log2(p).

  15. The retrolental-fibroplasia controversy provides one such case study (Greenland 1991).

References

  • Aalen OO, Røysland K, Gran JM, Kouyos R, Lange T. Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms. Stat Meth Med Res. 2016;25(5):2294–314.

    Article  CAS  Google Scholar 

  • Altman DG, Machin D, Bryant TN, Gardner MJ, editors. Statistics with Confidence. 2nd ed. London: BMJ Books; 2000.

    Google Scholar 

  • Baggerly K, Gunsalus CK. Penalty too light. Cancer Letter. 2015;41(42):1–9.

    Google Scholar 

  • Bancroft TW, Han CP. Inference based on conditional specification. Int Stat Rev. 1977;45:117–28.

    Google Scholar 

  • Belluz J, Plumer B, Resnick B. The 7 biggest problems facing science, according to 270 scientists. Vox, September 7, 2016, accessed Oct. 16, 2016 from http://www.vox.com/2016/7/14/12016710/science-challeges-research-funding-peer-review-process

  • Box GEP. Sampling and Bayes inference in scientific modeling and robustness. J R Stat Soc Ser A. 1980;143:383–430.

    Article  Google Scholar 

  • Box GEP. Comment. Statist Sci. 1990;5:448–9.

    Google Scholar 

  • Breslow NE. Are statistical contributions to medicine undervalued? Biometrics. 2003;59(1):1–8.

    Article  PubMed  Google Scholar 

  • Broadbent A, Vandenbroucke JP, Pearce N. Authors’ Reply to: VanderWeele et al., Chiolero, and Schooling et al. (letter). Int J Epidemiol 2016; in press.

  • Bross IDJ. Pertinency of an extraneous variable. J Chronic Dis. 1967;20:487–95.

    Article  CAS  PubMed  Google Scholar 

  • Chiolero A. Counterfactual and interventionist approach to cure risk factor epidemiology (letter). Int J Epidemiol 2016; in press.

  • Cornfield J, Haenszel WH, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst. 1959;22:173–203.

    CAS  PubMed  Google Scholar 

  • Cox DR. Some problems connected with statistical inference. Ann Math Stat. 1958;29:357–72.

    Article  Google Scholar 

  • Daniel RM, De Stavola BL, Vansteelandt S. The formal approach to quantitative causal inference in epidemiology: misguided or misrepresented? Int J Epidemiol 2016; in press.

  • Dawid AP. The well-calibrated Bayesian (with discussion). JASA. 1982;77:604–13.

    Google Scholar 

  • Dawid AP. Causal inference without counterfactuals (with discussion). JASA. 2000;95:407–48.

    Article  Google Scholar 

  • Dawid AP. Beware of the DAG! In: D Janzing IG, Schoelkopf B (eds). Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings, Whistler, Canada, 2008, 59–86.

  • Discacciati A, Orsini N, Greenland S. Approximate Bayesian logistic regression via penalized likelihood by data augmentation. Stata Journal. 2015;15(3):712–36.

    Google Scholar 

  • Dunning T. Improving causal inference: Strengths and limitations of natural experiments. Political Research Quarterly. 2008;61(2):282–93.

    Article  Google Scholar 

  • Ellis G, Silk J. Defend the integrity of physics. Nature. 2014;516:321–3.

    Article  CAS  PubMed  Google Scholar 

  • Farsides T, Sparks P. Opinion: Buried in bullshit. The Psychologist. 2016;29:368–71.

    Google Scholar 

  • Feyerabend P. Against Method. New York: New Left Books, 1975; 3rd ed. New York: Verso, 1993.

  • Feyerabend P. Killing Time. Chicago: U Chicago Press; 1995.

    Google Scholar 

  • Flanders WD, Johnson CY, Howards PP, Greenland S. Dependence of confounding on the target population: A modification of causal graphs to account for coaction. Ann Epidemiol. 2011;21:698–705.

    Article  PubMed  Google Scholar 

  • Fleiss JL. Significance tests have a role in epidemiologic research: reactions to A. M. Walker. Am J Public Health. 1986a;76:559–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleiss JL. Dr. Fleiss responds. Am J Public Health. 1986b;76:1033–4.

    Article  PubMed Central  Google Scholar 

  • Freedman DA. As others see us: a case study in path analysis (with discussion). J Educ Stat. 1987;12:101–223.

    Google Scholar 

  • Freedman DA, Navidi W, Peters SC. On the impact of variable selection in fitting regression equations. In: Dijlestra TK, editor. On model uncertainty and its statistical implications. Berlin: Springer-Verlag; 1988. p. 1–16.

    Chapter  Google Scholar 

  • Galea S. An argument for a consequentialist epidemiology. Am J Epidemiol. 2013;178:1185–91.

    Article  PubMed  Google Scholar 

  • Gelman A. Causality and statistical learning. Am J Sociol. 2011;117:955–66.

    Article  Google Scholar 

  • Gelman A. P-values and statistical practice. Epidemiology. 2013;24:69–72.

    Article  PubMed  Google Scholar 

  • Gelman A, Loken E. The statistical crisis in science: Data-dependent analysis—a “garden of forking paths”—explains why many statistically significant comparisons don’t hold up. Am Sci 2014a;102:460–465. Erratum at http://andrewgelman.com/2014/10/14/didnt-say-part-2/, accessed 25 Oct 2016.

  • Gelman A, Loken E. The AAA tranche of subprime science. Chance. 2014;27(1):51–7.

    Article  Google Scholar 

  • Gelman A, Shalizi CS. Philosophy and the practice of Bayesian statistics (with discussion). Br J Math Stat Psych. 2013;66:8–80.

    Article  Google Scholar 

  • Gelman A, Stern HS. The difference between “significant” and “not significant” is not itself statistically significant. Am Stat. 2006;60:328–31.

    Article  Google Scholar 

  • George SL, Buyse M. Data fraud in clinical trials. Clin. Invest (London). 2015;5(2):161–73.

    Article  CAS  Google Scholar 

  • Gigerenzer G. We need statistical thinking, not statistical rituals. Behavioral & Brain Sciences. 1998;21:199–200.

    Article  Google Scholar 

  • Gigerenzer G. Mindless statistics. J Socioecon. 2004;33:567–606.

    Google Scholar 

  • Gigerenzer G, Marewski JN. Surrogate science: the idol of a universal method for scientific inference. J Manag. 2015;41:421–40.

    Google Scholar 

  • Gill RD. Statistics, causality and Bell’s theorem. Statistical Science. 2014;29(4):512–28.

    Article  Google Scholar 

  • Gilovich T, Griffin D, Kahneman D. Heuristics and biases: the psychology of intuitive judgment. New York: Cambridge University Press; 2002.

    Book  Google Scholar 

  • Glass TA, Goodman SN, Hernán MA, Samet JM. Causal inference in public health. Annu Rev Public Health. 2013;34:61–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glymour C. Comment: Statistics and metaphysics. JASA. 1986;81:964–6.

    Google Scholar 

  • Glymour C, Glymour MR. Commentary: race and sex are causes. Epidemiology. 2014;25:488–90.

    Article  PubMed  Google Scholar 

  • Glymour MM, Greenland S. Causal diagrams. Ch. 12 in: Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott 2008; 183-209.

  • Goodman SN. P Values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate. Am J Epidemiol. 1993;137:485–96.

    Article  CAS  PubMed  Google Scholar 

  • Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clin Trials. 2005;2:282–90.

    Article  PubMed  Google Scholar 

  • Goodman SN, Royall R. Evidence and scientific research. Am J Public Health. 1988;78:1568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenhouse SW. Some epidemiologic issues for the 1980s. Am J Epidemiol. 1980;112(2):269–73.

    Article  CAS  PubMed  Google Scholar 

  • Greenland S. The author replies to Newman and Browner. Am J Epidemiol. 1988;128:1182–4.

    Article  Google Scholar 

  • Greenland S. Randomization, statistics, and causal inference. Epidemiol. 1990;1:421–9.

    Article  CAS  Google Scholar 

  • Greenland S. Science versus advocacy: The challenge of Dr. Feinstein. Epidemiol. 1991;2:72–79.

    Article  Google Scholar 

  • Greenland S. The sensitivity of a sensitivity analysis (invited paper). In: 1997 Proceedings of the Biometrics Section. Alexandria, VA: American Statistical Association 1998; 19-21.

  • Greenland S. Epidemiologic measures and policy formulation: Lessons from potential outcomes (with discussion). Emerging Themes in Epidemiology (online). 2005;2:1–4.

    Article  Google Scholar 

  • Greenland S. Introduction to Bayesian statistics. Ch. 18 in: Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott 2008; 328-44.

  • Greenland S. Weaknesses of certain Bayesian methods for meta-analysis: The case of vitamin E and mortality (invited commentary). Clinical Trials. 2009a;6:42–6.

    Article  PubMed  Google Scholar 

  • Greenland S. Relaxation penalties and priors for plausible modeling of nonidentified bias sources. Statistical Science. 2009b;24:195–210.

    Article  Google Scholar 

  • Greenland S. Overthrowing the tyranny of null hypotheses hidden in causal diagrams. Ch. 22 in: Dechter R, Geffner H, Halpern JY, eds. Heuristics, Probabilities, and Causality: A Tribute to Judea Pearl. London: College Press, 2010a, 365–382. Available at http://intersci.ss.uci.edu/wiki/pdf/Pearl/22_Greenland.pdf

  • Greenland S. Comment: The need for syncretism in applied statistics. Statist Sci. 2010b;25:158–61.

    Article  Google Scholar 

  • Greenland S. Null misinterpretation in statistical testing and its impact on health risk assessment. Preventive Medicine. 2011;53:225–8.

    Article  PubMed  Google Scholar 

  • Greenland S. Causal inference as a prediction problem: Assumptions, identification, and evidence synthesis. Ch. 5 in: Berzuini C, Dawid AP, Bernardinelli L (eds.). Causal Inference: Statistical Perspectives and Applications. Chichester: Wiley 2012a, 43-58.

  • Greenland S. Nonsignificance plus high power does not imply support for the null over the alternative. Annals of Epidemiology. 2012a;22:364–8.

    Article  PubMed  Google Scholar 

  • Greenland S. Transparency and disclosure, neutrality and balance: shared values or just shared words? Journal of Epidemiology and Community Health. 2012b;66:967–70.

    Article  PubMed  Google Scholar 

  • Greenland S. The ASA guidelines and null bias in current teaching and practice. Am Statist 2016; 70: suppl. 10 at http://www.tandfonline.com/doi/suppl/10.1080/00031305.2016.1154108

  • Greenland S. A serious misinterpretation of a consistent inverse association of statin use with glioma across 3 case-control studies. Eur J Epidemiol 2017a;32: in press.

  • Greenland S. The biases of bias analyses will not help validity or reproducibility. Am J Epidemiol 2017b; to appear.

  • Greenland S, Brumback BA. An overview of relations among causal modeling methods. Int J Epidemiol. 2002;31:1030–7.

    Article  PubMed  Google Scholar 

  • Greenland S, Lash TL. Bias analysis. Ch. 19 in: Rothman KJ, Greenland S, Lash TL. Modern Epidemiology, 3rd ed. Philadelphia: Lippincott 2008; 345-80.

  • Greenland S, Maclure M, Schlesselman JJ, Poole C, Morgenstern H. Standardized regression coefficients: a further critique and review of some alternatives. Epidemiology. 1991;2:387–92.

    Article  CAS  PubMed  Google Scholar 

  • Greenland S, Mansournia MA. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness. Eur J Epidemiol. 2015a;30:1101–10.

    Article  PubMed  Google Scholar 

  • Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Stat Med 2015b;34:3133–43.

  • Greenland S, Neutra RR. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9:361–7.

    Article  CAS  PubMed  Google Scholar 

  • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.

    Article  CAS  PubMed  Google Scholar 

  • Greenland S, Poole C. Living with statistics in observational research. Epidemiology. 2013;24:73–8.

    Article  PubMed  Google Scholar 

  • Greenland S, Robins JM. Identifiability, exchangeability and epidemiological confounding. Int J Epidemiol. 1986;15:413–9.

    Article  CAS  PubMed  Google Scholar 

  • Greenland S, Senn SJ, Rothman KJ, Carlin JC, Poole C, Goodman SN, Altman DG. Statistical tests, confidence intervals, and power: A guide to misinterpretations. Eur J Epidemiol 2016; 31:337-50. https://dx.doi.org/10.1007%2Fs10654-016-0149-3

  • Greenwood M. Is the statistical method of any value in medical research? Lancet. 1924;204:153–8.

    Article  Google Scholar 

  • Gustafson P. Bayesian inference for partially identified models. Int J Biostatist. 2010;6(2):17.

    Article  Google Scholar 

  • Gustafson P, Greenland S. The performance of random coefficient regression in accounting for residual confounding. Biometrics. 2006;62:760–8.

    Article  PubMed  Google Scholar 

  • Gustafson P, Greenland S. Interval estimation for messy observational data. Stat Sci. 2009;24:328–42.

    Article  Google Scholar 

  • Gustafson P, McCandless L. Priors, parameters, and probability: A Bayesian perspective on sensitivity analysis. Epidemiol. 2014;26:910–2.

    Article  Google Scholar 

  • Hall JB. An address on yesterday, to-day, and to-morrow. Lancet. 1924;204:151–3.

    Article  Google Scholar 

  • Hernán MA. Invited commentary: hypothetical interventions to define causal effects afterthought or prerequisite? Am J Epidemiol. 2005;162:618–20.

    Article  PubMed  Google Scholar 

  • Hernán MA. Does water kill? A call for less casual causal inferences. Ann Epidemiol. 2016;26:683–4.

    Article  Google Scholar 

  • Hernán MA, Clayton D, Keiding N. The Simpson’s paradox unraveled. Int J Epidemiol. 2011;40:780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernán MA, Robins JM. Causal inference. New York, Chapman & Hall, 2017, to appear.

  • Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes. 2008;32(suppl 3):S8–14.

    Article  Google Scholar 

  • Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Höfler M. The Bradford Hill considerations on causality: a counterfactual perspective. Emerg Themes Epidemiol. 2005;2(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland PW. Statistics and causal inference (with discussion). J Am Stat Assoc. 1986;81:945–70.

    Article  Google Scholar 

  • Hume, D. An Enquiry Concerning Human Understanding. Reprint of 1748 original by Oxford University Press, New York, 1999.

  • Ioannidis JPA. Why most discovered true associations are inflated. Epidemiol. 2008;19:640–8.

    Article  Google Scholar 

  • Kaufman JS. Race: ritual, regression, and reality. Epidemiol. 2014;25:485–7.

    Article  Google Scholar 

  • Kaufman JS. There is no virtue in vagueness. Ann Epidemiol. 2016;26:683–4.

    Article  PubMed  Google Scholar 

  • Keyes K, Galea S. What matters most: quantifying an epidemiology of consequence. Ann Epidemiol. 2015;25(5):305–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • King G, Zeng L. When can history be our guide? The pitfalls of counterfactual inference. Int Stud Q. 2007;51:183–210.

    Article  Google Scholar 

  • Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope of causal inference and explanation for Epidemiology. Int J Epidemiol 2016; in press.

  • Lachenbruch PA, Clark VA, Cumberland WG, Chang PC, Afifi AA, Flack VF, Elashoff RM. Letter to the Editor. AJPH. 1987;77(2):237.

    Google Scholar 

  • Lash TL. Heuristic thinking and inference from observational epidemiology. Epidemiology. 2007;18:67–72.

    Article  PubMed  Google Scholar 

  • Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data. Boston: Springer; 2009.

    Book  Google Scholar 

  • Leamer EE. Specification Searches. New York: Wiley; 1978.

    Google Scholar 

  • Leamer EE. Sensitivity analyses would help. Am Econ Rev. 1985;75:308–13.

    Google Scholar 

  • Lewis D. Causation J. Philos 1973;70:556–567. Reprinted with postscript in: Lewis D. Philosophical papers. New York: Oxford University Press, 1986.

  • Little RJA. Calibrated Bayes: A Bayes/frequentist roadmap. Am Statist. 2006;60:1–11.

    Article  Google Scholar 

  • Maclure M, Schneeweiss S. Causation of bias: The Episcope. Epidemiol. 2001;12:114–22.

    CAS  Google Scholar 

  • MacMahon B, Pugh TF. Causes and entities of disease. In: Clark DW, MacMahon B, eds. Preventive medicine. Boston: Little, Brown, 1967.

  • Maldonado G. Toward a clearer understanding of causal concepts in epidemiology. Ann Epidemiol. 2013;23:743–9.

    Article  PubMed  Google Scholar 

  • Maldonado G. The role of counterfactual theory in causal reasoning. Ann Epidemiol. 2016;26:681–2.

    Article  PubMed  Google Scholar 

  • Maldonado G, Greenland S. Response: Defining and estimating causal effects. Int J Epidemiol. 2002;31:434–8.

    Article  Google Scholar 

  • Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials-A conversation between trialists and epidemiologists. Epidemiol. 2017;28:54–9.

    Article  Google Scholar 

  • Mill JS. A System of Logic. Reprint by Longmans, Green, London: Ratiocinative and Inductive; 1843. p. 1956.

    Google Scholar 

  • Morabia A. Has epidemiology become infatuated with methods? Annu Rev Public Health. 2015;36:69–88.

    Article  PubMed  Google Scholar 

  • Naimi AI, Kaufman JS, MacLehose RF. Mediation misgivings: ambiguous clinical and public health interpretations of natural direct and indirect effects. In J Epidemiol. 2014;43:1656–61.

    Google Scholar 

  • Naimi AI. The counterfactual implications of fundamental cause theory. Curr Epidemiol Rep. 2016;3:92–7.

    Article  Google Scholar 

  • Neyman J. On the application of probability theory to agricultural experiments. Essay on principles. Section 9, 1923 (in Polish; translation in Statistical Science 1990, 465–472).

  • Neyman J. Frequentist probability and frequentist statistics. Synthese. 1977;36:97–131.

    Article  Google Scholar 

  • Newman TB, Browner WS. Re: “Interpretation and choice of effect measures in epidemiologic analyses” (letter). Am J Epidemiol. 1988;12:1181–2.

    Article  Google Scholar 

  • Pearce N, Vandenbroucke JP. Commentary: Causation, mediation and explanation. Int J Epidemiol 2017;46: in press.

  • Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.

    Article  Google Scholar 

  • Pearl J. Causality: models, reasoning and inference. 2nd ed. Cambridge, UK: Cambridge University Press; 2009.

    Book  Google Scholar 

  • Pearl J. On the consistency rule in causal inference: Axiom, definition, assumption, or theorem? Am J Epidemiol. 2010;21(6):872–5.

    Article  Google Scholar 

  • Pearl J. Causes of effects and effects of causes. Soc Meth Res. 2015;44(1):149–64.

    Article  Google Scholar 

  • Phillips CV. Quantifying and reporting uncertainty from systematic errors. Epidemiology. 2003;14:459–66.

    PubMed  Google Scholar 

  • Phillips CV, Goodman KJ. The missed lessons of Sir Austin Bradford Hill. Epidemiol Perspect Innov. 2004;1:3. doi:10.1186/1742-5573-1-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips CV, Goodman KJ. Causal criteria and counterfactuals: nothing more (or less) than scientific common sense. Emerg Themes Epidemiol. 2006;3:5. doi:10.1186/1742-7622-3-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price H. Time’s Arrow and Archimedes’ Point. New York: Oxford, 1996.

  • Poole C. Beyond the confidence interval. Am J Public Health. 1987;77:195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole C. Low P-values or narrow confidence intervals: Which are more durable? Epidemiol. 2001;12:291–4.

    Article  CAS  Google Scholar 

  • Poole C, Greenland S. How a court accepted a possible explanation: A comment on Gastwirth, Krieger, and Rosenbaum. Am Statist. 1997;51:112–4.

    Google Scholar 

  • Porta M, Bolúmar F. Caution: work in progress. Eur J Epidemiol. 2016;31:535–9.

    Article  PubMed  Google Scholar 

  • Porta M, Vineis P, Bolúmar F. The current deconstruction of paradoxes: one sign of the ongoing methodological “revolution”. Eur J Epidemiol. 2015;30:1079–87.

    Article  PubMed  Google Scholar 

  • Rhodes E. Replication: Is the glass half full, half empty, or irrelevant? The Psychologist, 7th March 2016.

  • Richardson T, Robins JM. Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality. Working Paper 128. Center for the Statistics and the Social Sciences, University of Washington, Seattle, 2013.

  • Robins JM. A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. J Chron Dis. 1987;40(supplement 2):139S–61S.

    Article  PubMed  Google Scholar 

  • Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3:143–55.

    Article  CAS  PubMed  Google Scholar 

  • Robins JM, Greenland S. Comment. J Am Stat Assoc. 2000;95:431–5.

    Article  Google Scholar 

  • Robins JM, Richardson TS. Alternative graphical causal models and the identification of direct effects. Ch. 6 in Shrout P, Keyes K, Ornstein K, eds. Causality and Psychopathology: Finding the Determinants of Disorders and their Cures. New York: Oxford, 2011, 1-52.

  • Robins JM, Vander Weele TJ, Gill RD. A proof of Bell’s inequality in quantum mechanics using causal interactions. Scand J Statistics. 2015;42:329–35.

    Article  Google Scholar 

  • Robins JM, Weissman M. Counterfactual causation and streetlamps: What is to be done? Int J Epidemiol 2016; in press.

  • Robins JM, Wasserman L. On the impossibility of inferring causation from association without background knowledge (with discussion). In: Glymour C, Cooper G, editors. Computation, Causation, and Discovery. Cambridge, MA: MIT Press; 1999. p. 305–42.

    Google Scholar 

  • Robins JM, Scheines R, Spirtes P, Wasserman L. Uniform consistency in causal inference. Biometrika. 2003;90:491–515.

    Article  Google Scholar 

  • Romer P. The trouble with macroeconomics. Am Economist 2016;to appear.

  • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.

    Article  Google Scholar 

  • Rothman KJ. Causes. Am J Epidemiol. 1976;104:587–92.

    Article  CAS  PubMed  Google Scholar 

  • Rothman KJ. A show of confidence. NEJM. 1978;299:1362–3.

    Article  CAS  PubMed  Google Scholar 

  • Rothman KJ. Significance questing. Ann Intern Med. 1986;105:445–7.

    Article  CAS  PubMed  Google Scholar 

  • Rouen TA. Letter to the Editor. AJPH. 1987;77(2):237.

    Google Scholar 

  • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66:688–701.

    Article  Google Scholar 

  • Rubin DB. Comment: Neyman (1923) and causal inference in experiments and observational studies. Stat Sci. 1990;5:472–80.

    Google Scholar 

  • Rubin DB. Practical implications of modes of statistical inference for causal effects, and the critical role of the assignment mechanism. Biometrics. 1991;47:1213–34.

    Article  CAS  PubMed  Google Scholar 

  • Schooling C, Chow C, Au Yeung S. Causality and causal inference in epidemiology: we need also to address causes of effects (letter). Int J Epidemiol 2016; in press.

  • Schwartz S, Gatto NM, Campbell UB. Causal identification: A charge of epidemiology in danger of marginalization. Ann Epidemiol. 2016;26:669–73.

    Article  PubMed  Google Scholar 

  • Schwartz S, Gatto NM, Campbell UB. Heeding the call for less casual causal inferences: The utility of realized (quantitative) causal effects. Ann Epidemiol 2017;27: in press.

  • Seliger C, Meier CR, Becker C, Jick SS, Bogdahn U. Hau1 P, Leitzmann MF. Statin use and risk of glioma: population-based case-control analysis. Eur J Epidemiol. 2016;31:947–51.

    Article  CAS  PubMed  Google Scholar 

  • Sellke TM, Bayarri MJ, Berger JO. Calibration of p values for testing precise null hypotheses. Am Stat. 2001;55:62–71.

    Article  Google Scholar 

  • Senn SJ. Two cheers for P-values. J Epidemiol Biostat. 2001;6(2):193–204.

    Article  CAS  PubMed  Google Scholar 

  • Senn SJ. Letter to the Editor re: Goodman 1992. Stat Med. 2002;21:2437–44.

    Article  PubMed  Google Scholar 

  • Shafer G. Comment: Estimating causal effects. Int J Epidemiol. 2002;31:434–5.

    Article  PubMed  Google Scholar 

  • Simon HA, Rescher N. Cause and counterfactual. Philosophy of Science. 1966;33(4):323–40.

    Article  Google Scholar 

  • Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. Cambridge MA: MIT Press; 2001.

    Google Scholar 

  • Stallones RA. To advance epidemiology. Ann Rev Public Health. 1980;1:69–82.

    Article  CAS  Google Scholar 

  • Stalnaker RC. A theory of conditionals. In: Studies in Logical Theory, ed. Rescher N, 98-112. Oxford: Blackwell, 1968. Repr. in Causation and Conditionals, ed. E. Sosa, 165-79. Oxford: Oxford University Press, 1975.

  • Stolley PD. When genius errs: R.A. Fisher and the lung cancer controversy. Am J Epidemiol. 1991;133(5):416–25.

    Article  CAS  PubMed  Google Scholar 

  • Student (Gossett, WS). The probable error of a mean. Biometrika 1908;VI:1–25.

  • Sullivan S, Greenland S. Bayesian regression in SAS software. Int J Epidemiol 2013;42:308-317. Erratum. Int J Epidemiol. 2014;43:1667–8.

    Article  Google Scholar 

  • Susser M. Judgment and causal inference. Am J Epidemiol. 1977;105:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Susser M. What is a cause and how do we know one? A grammar for pragmatic epidemiology. Am J Epidemiol. 1991;133:635–48.

    Article  CAS  PubMed  Google Scholar 

  • Taleb NN. The Black Swan: The Impact of the Highly Improbable, 2nd ed. Random House 2010.

  • Tukey JW. Causation, regression, and path analysis. In: Kempthorne O, ed. Statistics and Mathematics in Biology. Ames: Iowa State Press, 1954; Ch. 3.

  • Tukey JW. The future of data analysis. Ann Math Stat. 1962;33:1–67.

    Article  Google Scholar 

  • Vandenbroucke JP. Commentary: ‘Smoking and lung cancer’ the embryogenesis of modern epidemiology. Int J Epidemiol. 2009;38:1193–6.

    Article  PubMed  Google Scholar 

  • Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal inference in epidemiology: the need for a pluralistic approach. Int J Epidemiol 2016; in press.

  • VanderWeele TJ. Explanation in causal inference: methods for mediation and interaction. New York, NY: Oxford University Press; 2015.

    Google Scholar 

  • VanderWeele TJ. On causes, causal inference, and potential outcomes. Int J Epidemiol 2016a; in press.

  • VanderWeele TJ. The role of potential outcomes thinking in assessing mediation and interaction. Int J Epidemiol 2016b; in press.

  • VanderWeele TJ. Discussion of “Causal inference using invariant prediction: identification and confidence intervals” by Peters, Bühlmann and Meinshausen. J Roy Stat Soc B. 2016;78:995.

    Google Scholar 

  • VanderWeele TJ, Hernán MA. Causal effects and natural laws: Towards a conceptualization of causal counterfactuals for nonmanipulable exposures, with application to the effects of race and sex. Ch. 9 in: Berzuini C, Dawid AP, Bernardinelli L (eds.). Causal Inference: Statistical Perspectives and Applications. Chichester: Wiley 2012, 101-13.

  • VanderWeele TJ, Hernán MA, Tchetgen Tchetgen EJ, Robins JM. Re: Causality and causal inference in epidemiology: the need for a pluralistic approach (letter). Int J Epidemiol 2016; in press.

  • VanderWeele TJ, Robins JM. Stochastic counterfactuals and stochastic sufficient causes. Statistica Sinica. 2012;22:279–92.

    Article  Google Scholar 

  • VanderWeele TJ, Robinson WR. On causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiol. 2014;25:473–84.

    Article  Google Scholar 

  • Wagenmakers E-J. A practical solution to the pervasive problem of p values. Psychon Bull Rev. 2007;14:779–804.

    Article  PubMed  Google Scholar 

  • Walker AM. Reporting the results of epidemiologic studies. Am J Public Health. 1986a;76:556–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AM. Significance tests represent consensus and standard practice. Am J Public Health. 1986b;76:1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserstein RL, Lazar NA. The ASA’s statement on p-values: context, process, and purpose. Am Statist. 2016;70(2):129–33.

    Article  Google Scholar 

  • Anonymous. A new low in drug research: 21 fabricated studies. Wall Street Journal Mar. 11, 2009.

  • Welch BL. On the z-test in randomized blocks and Latin squares. Biometrika. 1937;29:21–52.

    Article  Google Scholar 

  • Wilk MB. The randomization analysis of a generalized randomized block design. Biometrika. 1955;42:70–9.

    Google Scholar 

  • Wright S. Correlation and causation. Journal of Agricultural Research. 1921;20:557–85.

    Google Scholar 

  • Yates F. The influence of statistical methods for research workers on the development of the science of statistics. J Am Stat Assoc. 1951;46:19–34.

    Google Scholar 

Download references

Acknowledgements

I am deeply indebted to many colleagues for extensive comments and correspondence on the initial draft of this paper, including Alex Broadbent, Jan Vandenbroucke, Neil Pearce, Ashley Naimi, Jay Kaufman, Sharon Schwartz, Nicolle Gatto, Ulka Campbell, George Maldonado, Alfredo Morabia, James Robins, and Tyler VanderWeele. Any errors that remain are solely my responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander Greenland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenland, S. For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates. Eur J Epidemiol 32, 3–20 (2017). https://doi.org/10.1007/s10654-017-0230-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-017-0230-6

Key Words

Navigation