The LIFE Child study: a population-based perinatal and pediatric cohort in Germany


The LIFE Child study is a large population-based longitudinal childhood cohort study conducted in the city of Leipzig, Germany. As a part of LIFE, a research project conducted at the Leipzig Research Center for Civilization Diseases, it aims to monitor healthy child development from birth to adulthood and to understand the development of lifestyle diseases such as obesity. The study consists of three interrelated cohorts; the birth cohort, the health cohort, and the obesity cohort. Depending on age and cohort, the comprehensive study program comprises different medical, psychological, and sociodemographic assessments as well as the collection of biological samples. Optimal data acquisition, process management, and data analysis are guaranteed by a professional team of physicians, certified study assistants, quality managers, scientists and statisticians. Due to the high popularity of the study, more than 3000 children have already participated until the end of 2015, and two-thirds of them participate continuously. The large quantity of acquired data allows LIFE Child to gain profound knowledge on the development of children growing up in the twenty-first century. This article reports the number of available and analyzable data and demonstrates the high relevance and potential of the study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Loeffler M, Engel C, Ahnert P, Alfermann D, Arelin K, Baber R, et al. The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health. 2015;15:691. doi:10.1186/s12889-015-1983-z.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Quante M, Hesse M, Doehnert M, Fuchs M, Hirsch C, Sergeyev E, et al. The LIFE child study: a life course approach to disease and health. BMC Public Health. 2012;12:1021. doi:10.1186/1471-2458-12-1021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Larsen PS, Kamper-Jørgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, et al. Pregnancy and birth cohort resources in Europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol. 2013;27:393–414. doi:10.1111/ppe.12060.

    Article  PubMed  Google Scholar 

  4. 4.

    Jaddoe VWV, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EAP, et al. The Generation R Study: design and cohort update 2010. Eur J Epidemiol. 2010;25:823–41. doi:10.1007/s10654-010-9516-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Golding J, Pembrey M, Jones R, ALSPAC Study Team. ALSPAC—the avon longitudinal study of parents and children: study methodology. Paediatr Perinat Epidemiol. 2001;15:74–87.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Olsen J, Melbye M, Olsen SF, Sorensen TI, Aaby P, Andersen AM, et al. The Danish National Birth Cohort: its background, structure and aim. Scan J Public Health. 2001;29:300–7.

    CAS  Article  Google Scholar 

  7. 7.

    Hölling H, Schlack R, Kamtsiuris P, Butschalowsky H, Schlaud M, Kurth BM. The KiGGS study. Nationwide representative longitudinal and cross-sectional study on the health of children and adolescents within the framework of health monitoring at the Robert Koch Institute. Bundesgesundheitsbl. 2012;55:836–42. doi:10.1007/s00103-012-1486-3.

    Article  Google Scholar 

  8. 8.

    Heinrich J, Brüske I, Schnappinger M, Standl M, Flexeder C, Thiering E, et al. Two German birth cohorts: GINIplus and LISAplus. Bundesgesundheitsbl. 2012;55:864–74. doi:10.1007/s00103-012-1485-4.

    CAS  Article  Google Scholar 

  9. 9.

    Ebner A, Thyrian JR, Lange A, Lingnau M, Scheler-Hofmann M, Rosskopf D, et al. Survey of Neonates in Pomerania (SNiP): a population-based birth study-objectives, design and population coverage. Paediatr Perinat Epidemiol. 2010;24:190–9. doi:10.1111/j.1365-3016.2009.01078.x.

    Article  PubMed  Google Scholar 

  10. 10.

    Jacobsen TN, Nohr EA, Frydenberg M. Selection by socioeconomic factors into the Danish National Birth Cohort. Eur J Epidemiol. 2010;25:349–55. doi:10.1007/s10654-010-9448-2.

    Article  PubMed  Google Scholar 

  11. 11.

    Winkler J, Stolzenberg H. Adjustierung des Sozialen-Schicht-Index für die Anwendung im Kinder-und Jugendgesundheitssurvey (KiGGS). Wismar: Hochsch. Fachbereich Wirtschaft; 2009.

    Google Scholar 

  12. 12.

    Lawlor DA, Fraser A, Lindsay RS, Ness A, Dabelea D, Catalano P, et al. Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort. Diabetologia. 2010;53:89–97. doi:10.1007/s00125-009-1560-z.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ramakrishnan U, Grant F, Goldenberg T, Zongrone A, Martorell R. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26:285–301. doi:10.1111/j.1365-3016.2012.01281.x.

    Article  PubMed  Google Scholar 

  14. 14.

    Kromeyer-Hauschild K, Wabitsch M, Kunze D, Gellert F, Geiß HC, Hesse V, et al. Perzentile für den Body-mass-Index für das Kindes-und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatss Kinderheilk. 2001;149:807–18.

    Article  Google Scholar 

  15. 15.

    Kromeyer-Hauschild K, Moss A, Wabitsch M. Referenzwerte für den Body-Mass-Index für Kinder, Jugendliche und Erwachsene in Deutschland. Anpassung der AGA-BMI-Referenz im Altersbereich von 15 bis 18 Jahren. Adipositas. 2015;9:123–7.

  16. 16.

    Freedman DS, Goodman A, Contreras OA, DasMahapatra P, Srinivasan SR, Berenson GS. Secular trends in BMI and blood pressure among children and adolescents: the Bogalusa Heart Study. Pediatrics. 2012;130:159–66. doi:10.1542/peds.2011-3302.

    Article  Google Scholar 

  17. 17.

    Lu X, Shi P, Luo C, Zhou Y, Yu H, Guo C, Wu F. Prevalence of hypertension in overweight and obese children from a large school-based population in Shanghai, China. BMC Public Health. 2013;13:24. doi:10.1186/1471-2458-13-24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Steinberger J. Obesity, insulin resistance, diabetes, and cardiovascular risk in children. Circulation. 2003;107:1448–53. doi:10.1161/01.CIR.0000060923.07573.F2.

    Article  PubMed  Google Scholar 

  19. 19.

    Kurth B, Schaffrath Rosario A. The prevalence of overweight and obese children and adolescents living in Germany: results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsbl. 2007;50:736–43. doi:10.1007/s00103-007-0235-5.

    Article  Google Scholar 

  20. 20.

    Skelton JA, Beech BM. Attrition in paediatric weight management: a review of the literature and new directions. Obes Rev. 2011;12:e273–81. doi:10.1111/j.1467-789X.2010.00803.x.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bretschneider T, Koop U, Schreiner V, Wenck H, Jaspers S. Validation of the body scanner as a measuring tool for a rapid quantification of body shape. Skin Res Technol. 2009;15:364–9. doi:10.1111/j.1600-0846.2009.00374.x.

    Article  PubMed  Google Scholar 

  22. 22.

    Jiménez-Pavón D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes. 2010;5:3–18. doi:10.3109/17477160903067601.

    Article  PubMed  Google Scholar 

  23. 23.

    Chadha RK, Subramanian A. The effect of visual impairment on quality of life of children aged 3–16 years. Br J Ophthalmol. 2011;95:642–5. doi:10.1136/bjo.2010.182386.

    Article  PubMed  Google Scholar 

  24. 24.

    Abanto J, Carvalho TS, Mendes FM, Wanderley MT, Bönecker M, Raggio DP. Impact of oral diseases and disorders on oral health-related quality of life of preschool children. Community Dent Oral Epidemiol. 2011;39:105–14. doi:10.1111/j.1600-0528.2010.00580.x.

    Article  PubMed  Google Scholar 

  25. 25.

    Asher MI, Montefort S, Björkstén B, Lai CKW, Strachan DP, Weiland SK, Williams H. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43. doi:10.1016/S0140-6736(06)69283-0.

    Article  PubMed  Google Scholar 

  26. 26.

    Bekes K, John MT, Zyriax R, Schaller HG, Hirsch C. The German version of the Child Perceptions Questionnaire (CPQ-G11-14): translation process, reliability, and validity in the general population. Clin Oral Investig. 2012;16:165–71. doi:10.1007/s00784-010-0496-5.

    Article  PubMed  Google Scholar 

  27. 27.

    John MT, Patrick DL, Slade GD. The German version of the Oral Health Impact Profile: translation and psychometric properties. Eur J Oral Sci. 2002;110:425–33.

    Article  PubMed  Google Scholar 

  28. 28.

    Wagner MO, Bos K, Jekauc D, Karger C, Mewes N, Oberger J, et al. Cohort profile: the Motorik-Modul Longitudinal Study: physical fitness and physical activity as determinants of health development in German children and adolescents. Int J Epidemiol. 2014;43:1410–6. doi:10.1093/ije/dyt098.

    Article  PubMed  Google Scholar 

  29. 29.

    Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–303. doi:10.1136/adc.44.235.291.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23. doi:10.1136/adc.45.239.13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Manning JT. The finger ratio. Sex, behaviour and disease revealed in the fingers. London: Faber and Faber; 2008.

    Google Scholar 

  32. 32.

    Herberth G, Hinz D, Bauer M, Röder S, Olek S, Hühn J, et al. Environmental exposure during pregnancy modulates fetal Treg development with consequences for the allergy risk of the child. J Reprod Immunol. 2012;94:54. doi:10.1016/j.jri.2012.03.336.

    Article  Google Scholar 

  33. 33.

    Weisse K, Winkler S, Hirche F, Herberth G, Hinz D, Bauer M, et al. Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study. Allergy. 2013;68:220–8. doi:10.1111/all.12081.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Erhart M, Herpertz-Dahlmann B, Wille N, Sawitzky-Rose B, Holling H, Ravens-Sieberer U. Examining the relationship between attention-deficit/hyperactivity disorder and overweight in children and adolescents. Eur Child Adolesc Psychiatry. 2012;21:39–49. doi:10.1007/s00787-011-0230-0.

    Article  PubMed  Google Scholar 

  35. 35.

    Holtkamp K, Konrad K, Müller B, Heussen N, Herpertz S, Herpertz-Dahlmann B, Hebebrand J. Overweight and obesity in children with attention-deficit/hyperactivity disorder. Int J Obes Relat Metab Disord. 2004;28:685–9. doi:10.1038/sj.ijo.0802623.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Bayley N. Bayley scales of infant development. 3rd ed. Frankfurt/Main: Pearson; 2006.

    Google Scholar 

  37. 37.

    Ravens-Sieberer U. The Kidscreen questionnaires: quality of life questionnaires for children and adolescents. Lengerich: Pabst Science Publ; 2006.

    Google Scholar 

  38. 38.

    Goodman R. The Strengths and Difficulties Questionnaire: a research note. J Child Psychol Psychiatry. 1997;38:581–6.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Arnett J. Sensation seeking: a new conceptualization and a new scale. Personal Individ Differ. 1994;16:289–96. doi:10.1016/0191-8869(94)90165-1.

    Article  Google Scholar 

  40. 40.

    Döpfner M, Lehmkuhl G. DISYPS-KJ: Diagnostik-System für psychische Störungen im Kindes-und Jugendalter nach ICD-10 und DSM-IV. 1st ed. Bern: Huber; 1998.

    Google Scholar 

  41. 41.

    Stiegler P, Sausenthaler S, Buyken AE, Rzehak P, Czech D, Linseisen J, et al. A new FFQ designed to measure the intake of fatty acids and antioxidants in children. Public Health Nutr. 2010;13:38–46. doi:10.1017/S1368980009005813.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Birch LL, Fisher JO, Grimm-Thomas K, Markey CN, Sawyer R, Johnson SL. Confirmatory factor analysis of the Child Feeding Questionnaire: a measure of parental attitudes, beliefs and practices about child feeding and obesity proneness. Appetite. 2001;36:201–10. doi:10.1006/appe.2001.0398.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hilbert A, Hartmann AS, Czaja J. Child Eating Disorder Examination-Questionnaire for Children: psychometric properties of the German version. Klin. Diagnostik u. Evaluation. 2008;1:447–64.

    Google Scholar 

  44. 44.

    Schwerdtle B, Roeser K, Kübler A, Schlarb AA. Validation and psychometric properties of the German version of the Sleep Self Report (SSR-DE). Somnologie. 2010;14:267–74. doi:10.1007/s11818-010-0496-3.

    Article  Google Scholar 

  45. 45.

    Schlarb AA, Schwerdtle B, Hautzinger M. Validation and psychometric properties of the German version of the Children’s Sleep Habits Questionnaire (CSHQ-DE). Somnologie. 2010;14:260–6. doi:10.1007/s11818-010-0495-4.

    Article  Google Scholar 

  46. 46.

    Nilsson C, Carlsson A, Landin-Olsson M. Increased risk for overweight among Swedish children born to mothers with gestational diabetes mellitus. Pediatr Diabetes. 2014;15:57–66. doi:10.1111/pedi.12059.

    Article  PubMed  Google Scholar 

  47. 47.

    Woo Baidal JA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM. Risk factors for childhood obesity in the first 1000 days: a systematic review. Am J Prev Med. 2016;. doi:10.1016/j.amepre.2015.11.012.

    Google Scholar 

  48. 48.

    Löwe B, Spitzer RL, Zipfel S, Herzog W. Gesundheitsfragebogen für Patienten (PHQ D). Komplettversion und Kurzform. Karlsruhe: Pfizer; 2002.

    Google Scholar 

  49. 49.

    Neumann E, Rohmann E, Bierhoff H. Development and validation of scales for measuring avoidance and anxiety in romantic relationships: the Bochum Adult Attachment Questionnaire. Diagnostica. 2007;53:33–47. doi:10.1026/0012-1924.53.1.33.

    Article  Google Scholar 

  50. 50.

    Wei M, Russell DW, Mallinckrodt B, Vogel DL. The Experiences in Close Relationship Scale (ECR)-short form: reliability, validity, and factor structure. J Personal Assess. 2007;88:187–204. doi:10.1080/00223890701268041.

    Article  Google Scholar 

  51. 51.

    Rammstedt B, John OP. Measuring personality in one minute or less: a 10-item short version of the Big Five Inventory in English and German. J Res Personal. 2007;41:203–12. doi:10.1016/j.jrp.2006.02.001.

    Article  Google Scholar 

  52. 52.

    Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131:485–91.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Ceglarek U, Müller P, Stach B, Bührdel P, Thiery J, Kiess W. Validation of the phenylalanine/tyrosine ratio determined by tandem mass spectrometry: sensitive newborn screening for phenylketonuria. Clini Chem Lab Med. 2002;40:693–7. doi:10.1515/CCLM.2002.119.

    CAS  Google Scholar 

  54. 54.

    Ceglarek U, Leichtle A, Brügel M, Kortz L, Brauer R, Bresler K, et al. Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol Cell Endocrinol. 2009;301:266–71. doi:10.1016/j.mce.2008.10.013.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Declaration of Helsinki.

  56. 56.

    Quante M, Bruckmann S, Wallborn T, Wolf N, Sergeyev E, Adler M, et al. Managing incidental findings and disclosure of results in a paediatric research cohort—the LIFE child study cohort. J Pediatr Endocrinol Metab. 2015;28:75–82. doi:10.1515/jpem-2014-0079.

    Article  PubMed  Google Scholar 

  57. 57.

    Wallborn T, Grafe N, Quante M, Geserick M, Casprzig N, Ludwig J, et al. Never plan a population based cohort study on a rainy Friday after a sunny thursday. Eur J Epidemiol. 2013;28:285–6. doi:10.1007/s10654-013-9774-2.

    Article  PubMed  Google Scholar 

Download references


This publication is supported by LIFE – Leipzig Research Center for Civilization Diseases, University of Leipzig. LIFE is funded by means of the European Union, by means of the European Social Fund (ESF), by the European Regional Development Fund (ERDF), and by means of the Free State of Saxony within the framework of the excellence initiative. The Integrated Research and Treatment Center Adiposity Diseases is funded by the German Federal Ministry of Education and Research (Grant 01EO1501).

Author information




Corresponding author

Correspondence to Tanja Poulain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent is obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poulain, T., Baber, R., Vogel, M. et al. The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur J Epidemiol 32, 145–158 (2017).

Download citation


  • Longitudinal study
  • Cohort study
  • Children
  • Obesity
  • Pregnancy
  • Epidemiology