European Journal of Epidemiology

, Volume 30, Issue 9, pp 1067–1069 | Cite as

The use of fecal samples for studying human obesity

  • Marisol Aguirre
  • Koen Venema

The impact of colonic bacteria on obesity in humans should not be underestimated. The breakdown of otherwise indigestible compounds by the colonic microbiota is an important function accomplished by syntrophic interactions, the products of which (mainly short chain fatty acids—SCFA—) may account for more than a 10 % of the human energy requirement. It is estimated that a slight increase of just 1 % in the microbial metabolic activity may increase an input of energy of 20 kcal day−1 to the host (based on a diet of 2000 kcal day−1) which could lead to a weight gain of approximately 1 kg per year [1]. On the other hand, production of SCFA may lead to satiety by inducing the secretion of gut hormones [2]. Therefore, it is crucial to understand factors that elicit changes in the microbiota and its fermentation efficiency since it may impact host energy balance as well.

Accurate in situ measurement of production of SCFA in humans is restricted not only due to the fact that such measurements...


Feces Small intestine Obesity Gut microbiota 



This study was partly funded by the Top Institute Food & Nutrition (GH004) (TIFN, Wageningen, The Netherlands).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Payne AN, Chassard C, Banz Y, Lacroix C. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol Ecol. 2012;80(3):608–23. doi: 10.1111/j.1574-6941.2012.01330.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Aguirre M, Venema K. Does the gut microbiota contribute to obesity? Going beyond the gut feeling. Microorganisms. 2015;3(2):213–35.CrossRefGoogle Scholar
  3. 3.
    Raoult D, Henrissat B. Are stool samples suitable for studying the link between gut microbiota and obesity? Eur J Epidemiol. 2014;29(5):307–9. doi: 10.1007/s10654-014-9905-4.CrossRefPubMedGoogle Scholar
  4. 4.
    Dore J, Clement K. Reply to C Matuchansky. Am J Clin Nutr. 2014;99(3):650–1. doi: 10.3945/ajcn.113.078204.CrossRefPubMedGoogle Scholar
  5. 5.
    Ling SC, Weaver LT. The fate of fat in the infant’s colon. QJM. 1997;90(9):553–5.CrossRefPubMedGoogle Scholar
  6. 6.
    El Aidy S, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol. 2014;32C:14–20. doi: 10.1016/j.copbio.2014.09.005.Google Scholar
  7. 7.
    Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38. doi: 10.1038/nrmicro2974.CrossRefPubMedGoogle Scholar
  8. 8.
    Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3(2):179–89. doi: 10.1038/ismej.2008.108.CrossRefPubMedGoogle Scholar
  9. 9.
    Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012;6(7):1415–26. doi: 10.1038/ismej.2011.212.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Top Institute of Food and NutritionWageningenThe Netherlands
  2. 2.Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutritional and Translational Research in Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
  3. 3.The Netherlands Organization for Applied Scientific Research (TNO)ZeistThe Netherlands
  4. 4.Beneficial Microbes ConsultancyWageningenThe Netherlands

Personalised recommendations