European Journal of Epidemiology

, Volume 30, Issue 5, pp 425–433 | Cite as

Dietary glycemic load and risk of cognitive impairment in women: findings from the EPIC-Naples cohort

  • Vittorio SimeonEmail author
  • Paolo Chiodini
  • Amalia Mattiello
  • Sabina Sieri
  • Camilla Panico
  • Furio Brighenti
  • Vittorio Krogh
  • Salvatore Panico


Cognitive impairment is a common cause of morbidity in the elderly. The relationship between dietary habits and cognitive impairment in a female population living in the metropolitan area of Naples, in the Mediterranean part of Italy, has been evaluated in the Naples EPIC prospective cohort study. The study cohort, enrolled between 1993 and 1997, is composed of 5062 women aged 30–69 years. At time of enrolment anthropometric measures were performed and information about socio-demographic details, clinical data, lifestyle and dietary habits were collected. During 2008 and 2009, women 65 years of age or older received a telephone interview to evaluate cognitive status (TICS); the derived score was used as proxy of cognitive impairment. Analyses were carried out on 1514 participants. Linear regression model showed negative association between TICS score and, respectively, age at baseline (β = −.31, 95 % CI −.34, −.24), body mass index (BMI) (β = −.08, 95 % CI −.16, −.01), and glycemic load (GL) (β = −.02, 95 % CI −.03, −.01), whereas education level (β = 0.62, 95 % CI .56, .69) showed positive association. A logistic regression model, used to evaluate determinants of the low cognitive score (TICS score ≤ 15, 1st tertile), confirmed association for previous variables [age (OR 1.1, 95 % CI 1.08, 1.15); BMI (OR 1.03, 95 % CI 1.001, 1.07); GL (OR 1.005, 95 % CI 1.001, 1.011); education level (OR .82, 95 % CI .79, .84)] with, in addition, type II diabetes (OR 1.85, 95 % CI 1.014, 3.4). This study indicates that GL may play a role in determining risk of cognitive impairment, besides age, BMI, education and diabetes.


Glycemic load Cognitive impairment Women Dietary habits 



The authors would like to acknowledge the scientific support of the Master in Epidemiology of the University of Turin and the Compagnia di San Paolo Foundation (no-profit foundation).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bornebroek M, Breteler MM. Epidemiology of non-AD dementias. Clin Neurosci Res. 2004;3:349–61.CrossRefGoogle Scholar
  2. 2.
    Kral VA. Senescent forgetfulness: benign and malignant. Can Med Assoc J. 1962;86:257–60.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Crook T, Bartus RT, Ferris SH, Whitehouse P, Cohen GD, Gershon S. Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change—report of a national institute of mental health work group. Dev Neuropsychol. 1986;2:261–76.CrossRefGoogle Scholar
  4. 4.
    Levy R. Aging-associated cognitive decline. Working Party of the International Psychogeriatric Association in collaboration with the World Health Organization. Int Psychogeriatr. 1994;6:63–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Ritchie K, Artero S, Touchon J. Classification criteria for mild cognitive impairment: a population-based validation study. Neurology. 2001;56:37–42.PubMedCrossRefGoogle Scholar
  6. 6.
    WHO | Women, ageing and health: a framework for action. World Health Organization.
  7. 7.
    Van Oyen H, Nusselder W, Jagger C, Kolip P, Cambois E, Robine J-M. Gender differences in healthy life years within the EU: an exploration of the “health-survival” paradox. Int J Public Health. 2013;58:143–55.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ahmed T, Haboubi N. Assessment and management of nutrition in older people and its importance to health. Clin Interv Aging. 2010;5:207–16.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Krondl M, Coleman P, Lau D. Helping older adults meet nutritional challenges. J Nutr Elder. 2008;27:205–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Fong TG, Fearing MA, Jones RN, Shi P, Marcantonio ER, Rudolph JL, et al. Telephone interview for cognitive status: creating a crosswalk with the Mini-Mental State Examination. Alzheimers Dement. 2009;5:492–7.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Brandt J, Spencer M, Folstein M. The telephone interview for cognitive status. Neuropsychiatry Neuropsychol Behav Neurol. 1988;1:111–7.Google Scholar
  12. 12.
    Van Hooren SAH, Valentijn AM, Bosma H, Ponds RWHM, van Boxtel MPJ, Jolles J. Cognitive functioning in healthy older adults aged 64–81: a cohort study into the effects of age, sex, and education. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14:40–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.PubMedCrossRefGoogle Scholar
  14. 14.
    McGuire LC, Ajani UA, Ford ES. Cognitive functioning in late life: the impact of moderate alcohol consumption. Ann Epidemiol. 2007;17:93–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, et al. Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology. 2013;24:479–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Ravona-Springer R, Moshier E, Schmeidler J, Godbold J, Akrivos J, Rapp M, et al. Changes in glycemic control are associated with changes in cognition in non-diabetic elderly. J Alzheimers Dis. 2012;30:299–309.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Umegaki H, Hayashi T, Nomura H, Yanagawa M, Nonogaki Z, Nakshima H, et al. Cognitive dysfunction: an emerging concept of a new diabetic complication in the elderly. Geriatr Gerontol Int. 2013;13:28–34.PubMedCrossRefGoogle Scholar
  18. 18.
    West RK, Ravona-Springer R, Schmeidler J, Leroith D, Koifman K, Guerrero-Berroa E, et al. The Association of duration of type 2 diabetes with cognitive performance is modulated by long-term glycemic control. Am J Geriatr Psychiatry. 2014;22:1055–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Sieri S, Pala V, Brighenti F, Agnoli C, Grioni S, Berrino F, et al. High glycemic diet and breast cancer occurrence in the Italian EPIC cohort. Nutr Metab Cardiovasc Dis. 2013;23:628–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Sieri S, Krogh V, Berrino F, Evangelista A, Agnoli C, Brighenti F, et al. Dietary glycemic load and index and risk of coronary heart disease in a large italian cohort: the EPICOR study. Arch Intern Med. 2010;170:640–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Sieri S, Brighenti F, Agnoli C, Grioni S, Masala G, Bendinelli B, et al. Dietary glycemic load and glycemic index and risk of cerebrovascular disease in the EPICOR cohort. PLoS One. 2013;8:e62625.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Panico S, Dello Iacovo R, Celentano E, Galasso R, Muti P, Salvatore M, et al. Progetto ATENA, a study on the etiology of major chronic diseases in women: design, rationale and objectives. Eur J Epidemiol. 1992;8:601–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Riboli E, Kaaks R. The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. 1997;26(Suppl 1):S6–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105–87.PubMedCrossRefGoogle Scholar
  25. 25.
    Rubba F, Mattiello A, Chiodini P, Celentano E, Galasso R, Ciardullo AV, et al. Menstrual cycle length, serum lipids and lipoproteins in a cohort of Italian Mediterranean women: findings from Progetto ATENA. Nutr Metab Cardiovasc Dis. 2008;18:659–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol. 1997;26(Suppl 1):S152–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Salvini S, Parpinel M GP. Banca dati di composizione degli alimenti per studi epidemiologici in Italia. European Institute of Oncology (IEO). Milano. 1998.Google Scholar
  28. 28.
    Agnoli C, Grioni S, Sieri S, Palli D, Masala G, Sacerdote C, et al. Italian Mediterranean Index and risk of colorectal cancer in the Italian section of the EPIC cohort. Int J Cancer. 2013;132:1404–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31:2281–3.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Prignot J. Quantification and chemical markers of tobacco-exposure. Eur J Respir Dis. 1987;70:1–7.PubMedGoogle Scholar
  31. 31.
    Friedenreich CM, Courneya KS, Neilson HK, Matthews CE, Willis G, Irwin M, et al. Reliability and validity of the Past Year Total Physical Activity Questionnaire. Am J Epidemiol. 2006;163:959–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Dal Forno G, Chiovenda P, Bressi F, Ferreri F, Grossi E, Brandt J, et al. Use of an Italian version of the telephone interview for cognitive status in Alzheimer’s disease. Int J Geriatric Psychiatry. 2006;21:126–33.CrossRefGoogle Scholar
  33. 33.
    Brandt J, Welsh KA, Breitner JC, Folstein MF, Helms M, Christian JC. Hereditary influences on cognitive functioning in older men. A study of 4000 twin pairs. Arch Neurol. 1993;50:599–603.PubMedCrossRefGoogle Scholar
  34. 34.
    de Jager CA, Budge MM, Clarke R. Utility of TICS-M for the assessment of cognitive function in older adults. Int J Geriatr Psychiatry. 2003;18:318–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Cook SE, Marsiske M, McCoy KJM. The use of the Modified Telephone Interview for Cognitive Status (TICS-M) in the detection of amnestic mild cognitive impairment. J Geriatr Psychiatry Neurol. 2009;22:103–9.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986;124:17–27.PubMedGoogle Scholar
  37. 37.
    Euser SM, Schram MT, Hofman A, Westendorp RGJ, Breteler MMB. Measuring cognitive function with age: the influence of selection by health and survival. Epidemiology. 2008;19:440–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Mäki N, Martikainen P, Eikemo T, Menvielle G, Lundberg O, Ostergren O, et al. Educational differences in disability-free life expectancy: a comparative study of long-standing activity limitation in eight European countries. Soc Sci Med. 2013;94:1–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Fratiglioni L, Wang H-X. Brain reserve hypothesis in dementia. J Alzheimers Dis. 2007;12:11–22.PubMedGoogle Scholar
  40. 40.
    Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, et al. Implementation of the Women’s Health Initiative study design. Ann Epidemiol. 2003;13:S5–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Kerwin DR, Gaussoin SA, Chlebowski RT, Kuller LH, Vitolins M, Coker LH, et al. Interaction between body mass index and central adiposity and risk of incident cognitive impairment and dementia: results from the Women’s Health Initiative Memory Study. J Am Geriatr Soc. 2011;59:107–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Toffoletto S, Lanzenberger R, Gingnell M, Sundström-Poromaa I, Comasco E. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review. Psychoneuroendocrinology. 2014;50C:28–52.CrossRefGoogle Scholar
  43. 43.
    Yaffe K, Blackwell T, Kanaya AM, Davidowitz N, Barrett-Connor E, Krueger K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004;63:658–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Sieri S, Krogh V, Agnoli C, Ricceri F, Palli D, Masala G, et al. Dietary glycemic index and glycemic load and risk of colorectal cancer: results from the EPIC-Italy study. Int J Cancer. 2014;. doi: 10.1002/ijc.29341.Google Scholar
  45. 45.
    Luchsinger JA, Tang MX, Mayeux R. Glycemic load and risk of Alzheimer’s disease. J Nutr Health Aging. 2007;11:238–41.PubMedGoogle Scholar
  46. 46.
    Seetharaman S, Andel R, McEvoy C, Dahl Aslan AK, Finkel D, Pedersen NL. Blood glucose, diet-based glycemic load and cognitive aging among dementia-free older adults. J Gerontol A Biol Sci Med Sci. 2014; pii: glu135.Google Scholar
  47. 47.
    Di Filippo C, Verza M, Coppola L, Rossi F, D’Amico M, Marfella R. Insulin resistance and postprandial hyperglycemia the bad companions in natural history of diabetes: effects on health of vascular tree. Curr Diabetes Rev. 2007;3:268–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Abbatecola AM, Rizzo MR, Barbieri M, Grella R, Arciello A, Laieta MT, et al. Postprandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics. Neurology. 2006;67:235–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB. High glycemic index foods, overeating, and obesity. Pediatrics. 1999;103:E26.PubMedCrossRefGoogle Scholar
  50. 50.
    Convit A, Wolf OT, Tarshish C, de Leon MJ. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA. 2003;100:2019–22.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Schneider JA, Bennett DA. Where vascular meets neurodegenerative disease. Stroke. 2010;41:S144–6.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.PubMedCrossRefGoogle Scholar
  53. 53.
    Johnson KC, Margolis KL, Espeland MA, Colenda CC, Fillit H, Manson JE, et al. A prospective study of the effect of hypertension and baseline blood pressure on cognitive decline and dementia in postmenopausal women: the Women’s Health Initiative Memory Study. J Am Geriatr Soc. 2008;56:1449–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Psaltopoulou T, Kyrozis A, Stathopoulos P, Trichopoulos D, Vassilopoulos D, Trichopoulou A. Diet, physical activity and cognitive impairment among elders: the EPIC-Greece cohort (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2008;11:1054–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG. Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry. 1996;35:13568–78.PubMedCrossRefGoogle Scholar
  56. 56.
    Brayne C. Smoking and the brain. BMJ. 2000;320:1087–8.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Rockwood K, Middleton L. Physical activity and the maintenance of cognitive function. Alzheimers Dement. 2007;3:S38–44.PubMedCrossRefGoogle Scholar
  58. 58.
    May AM, Adema LE, Romaguera D, Vergnaud A-C, Agudo A, Ekelund U, et al. Determinants of non- response to a second assessment of lifestyle factors and body weight in the EPIC-PANACEA study. BMC Med Res Methodol. 2012;12:148.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Vittorio Simeon
    • 1
    Email author
  • Paolo Chiodini
    • 2
  • Amalia Mattiello
    • 3
  • Sabina Sieri
    • 4
  • Camilla Panico
    • 5
  • Furio Brighenti
    • 6
  • Vittorio Krogh
    • 4
  • Salvatore Panico
    • 3
  1. 1.Laboratory of Pre-Clinical and Translational ResearchIRCCS CROB - Referral Cancer Center of BasilicataRionero in VultureItaly
  2. 2.Medical Statistics UnitSecond University of NaplesNaplesItaly
  3. 3.Dipartimento di Medicina Clinica e ChirugiaFederico II UniversityNaplesItaly
  4. 4.Epidemiology and Prevention UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  5. 5.School of MedicineFederico II UniversityNaplesItaly
  6. 6.Department of Food ScienceUniversity of ParmaParmaItaly

Personalised recommendations