European Journal of Epidemiology

, Volume 29, Issue 9, pp 621–628 | Cite as

Recalibration of the SCORE risk chart for the Russian population

  • Dmitri A. Jdanov
  • Alexander D. Deev
  • Domantas Jasilionis
  • Svetlana A. Shalnova
  • Maria A. Shkolnikova
  • Vladimir M. Shkolnikov


Persisting high levels of cardiovascular mortality in Russia present a specific case among developed countries. Application of cardiovascular risk prediction models holds great potential for primary prevention in this country. Using a unique set of cohort follow-up data from Moscow and Saint Petersburg, this study aims to test and recalibrate the Systematic Coronary Risk Evaluation (SCORE) methods for predicting CVD mortality risks in the general population. The study is based on pooled epidemiological cohort data covering the period 1975–2001. The algorithms from the SCORE project were used for the calibration of the SCORE equation for the Moscow and St. Petersburg populations (SCORE-MoSP). Age-specific 10-year cumulative cardiovascular mortality rates were estimated according to the original SCORE-High and SCORE-Low equations and compared to the estimates based on the recalibrated SCORE-MoSP model and observed CVD mortality rates. Ten-year risk prediction charts for CVD mortality were derived and compared using conventional SCORE-High and recalibrated SCORE-MoSP methods. The original SCORE-High model tends to substantially under-estimate 10-year cardiovascular mortality risk for females. The SCORE-MoSP model provided better results which were closer to the observed rates. For males, both the SCORE-High and SCORE-MoSP provided similar estimates which tend to under-estimate CVD mortality risk at younger ages. These differences are also reflected in the risk prediction charts. Using non-calibrated scoring models for Russia may lead to substantial under-estimation of cardiovascular mortality risk in some groups of individuals. Although the SCORE-MoSP provide better results for females, more complex scoring methods involving a wider range of risk factors are needed.


Risk factors Cardiovascular mortality Risk prediction SCORE risk equation Russia 



This study was supported by research Grant R 01 AG 026786 from the National Institute of Aging (USA). The funding agency had no role in the study design; in the collection, analysis, and interpretation of the data; in writing the manuscript; or in the decision to submit it for publication.

Supplementary material

10654_2014_9947_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    Grundy SM, Balady GJ, Criqui MH, et al. Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task. Force on risk reduction. American Heart Association. Circulation. 1998;97:1876–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Beswick A, Brindle P. Risk scoring in the assessment of cardiovascular risk. Curr Opin Lipidol. 2006;17(4):375–86.PubMedCrossRefGoogle Scholar
  3. 3.
    Wilson PF, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Conroy RM, Pyöräla K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987–1003.PubMedCrossRefGoogle Scholar
  5. 5.
    Prieto-Marino D, Pocock SJ. The science of risk models. Eur J Prev Cardiol. 2012;19(2 Suppl):7–13.CrossRefGoogle Scholar
  6. 6.
    Ramsay SE, Morris RW, Whincup PH, et al. Prediction of coronary heart disease risk by Framingham and SCORE risk assessments varies by socioeconomic position: results from a study in British men. Eur J Cardiovasc Prev Rehabil. 2012;18(2):186–93.CrossRefGoogle Scholar
  7. 7.
    Neuhauser HK, Ellert U, Kurth BM. A comparison of Framingham and SCORE-based cardiovascular risk estimates in participants of the German National Health Interview and Examination Survey 1998. Eur J Cardiovasc Prev Rehabil. 2005;12(5):442–50.PubMedCrossRefGoogle Scholar
  8. 8.
    van Dis I, Kromhout D, Geleijnse JM, et al. Evaluation of cardiovascular risk predicted by different SCORE equations: the Netherlands as an example. Eur J Cardiovasc Prev Rehabil. 2010;17(2):244–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Perk J, De Backer G, Gohlke H, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012;33(13):1635–701.PubMedCrossRefGoogle Scholar
  10. 10.
    Vikhireva O, Pajak A, Broda G et al. SCORE performance in Central and Eastern Europe and former Soviet Union: MONICA and HAPIEE results. Eur Heart J ahead of print 20 June 2013. doi: 10.1093/eurheartj/eht189.
  11. 11.
    Shkolnikov V, Meslé F, Vallin J. Health crisis in Russia I. Recent trends in life expectancy and causes of death from 1970 to 1993. Popul Engl Sel. 1996;8:123–54.Google Scholar
  12. 12.
    Meslé F. Mortality in eastern and western Europe: awidening gap. In: Coleman D, editor. Europe’s population in the 1990s. Oxford: Oxford University Press; 1996. p. 127–43.Google Scholar
  13. 13.
    Shkolnikov VM, Andreev EM, Leon DA, et al. Mortality reversal in Russia: the story so far. Hyg Int. 2004;4(4):29–80.Google Scholar
  14. 14.
    Shkolnikov VM, Andreev EM, McKee M, et al. Components and possible determinants of decrease in Russian mortality in 2004–2010. Demogr Res. 2013;28:917–50.CrossRefGoogle Scholar
  15. 15.
    Shalnova SA, Oganov RG, Deev AD. Otsenka i upravlenyesumarnymriskomserdechno-sosudistykhzabolevanii u naselenya Rossii. Cardiovasc Ther Prev. 2004;3(4):4–11.Google Scholar
  16. 16.
    Shalnova SA, Vikhireva OV. Otsenkasumarnogoriskaserdechno-sosudistyhzabolevanii. Ration Pharmacother Cardiol. 2005;3:54–6.Google Scholar
  17. 17.
    US-USSR Steering Committee for Problem Area 1. The pathogenesis of atherosclerosis. Collaborative US-USSR study on the prevalence of dyslipoproteinemias and ischemic heart disease in American and soviet populations. Am J Cardiol. 1977;40:260–8.CrossRefGoogle Scholar
  18. 18.
    WHO MONICA Project. MONICA Manual. 1999. Accessed 05 May 2013.
  19. 19.
    Shigan EE. Dinamikaepidemiologicheskoisituacii v otnosheniismertnostiotosnovnyhkhronicheskihneinfekcionnykhzabolevaniisredimuzhskogonaselenya 20-69 let. Za 10-letniy period – s 1979-1980 po 1989–1991 g. (podannymepidemiologicheskihissledovanyi v g. Moskve) (Disertatsya). Moscow: State Research Center for Preventive Medicine, Ministry of Health of the Russian Federation; 1993.Google Scholar
  20. 20.
    Shkolnikov VM, Deev AD, Kravdal Ø, Valkonen T. Educational differentials in male mortality in Russia and northern Europe: a comparison of an epidemiological cohort from Moscow and St. Petersburg with the male populations of Helsinki and Oslo. Demogr Res. 2004;10(1):1–26.Google Scholar
  21. 21.
    Shestov DB, Deev AD, Klimov AN, et al. Increased risk of coronary heart disease death in men with low total and low-density lipoprotein cholesterol in the Russian Lipid Research Clinics Prevalence Follow-up Study. Circulation. 1993;88:846–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Ginter E. Cardiovascular risk factors in the former communist countries: analysis of 40 European MONICA populations. Eur J Epidemiol. 1995;11:199–205.PubMedCrossRefGoogle Scholar
  23. 23.
    Pencina MJ, Larson MG, D’Agostino RB. Choice of time scale and its effect on significance of predictors in longitudinal studies. Stat Med. 2007;26:1343–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Meslé F, Shkolnikov VM, Hertrich V, Vallin J. Tendances récentes de la mortalité par cause en Russie, 1965–1994: la crise sanitaire dans les pays de l’ex-URSS. Paris: INED; 1996.Google Scholar
  25. 25.
    Bedniy MS, Ivakina VN, Dmitriev VI, Nikolski AV. Analizstepenitochnostidiagnostikizabolevanii i prichinsmerti. Information Bulletin of the Russian Federation Ministry of Health; 1981.Google Scholar
  26. 26.
    Bedniy MS, Ivakina VN, Dmitriev VI, Nikolski AV. Analizmediko-demograficheskihpokazatelei. Moscow: Respublikanskaya NIL MeditsinskoyDemografii; 1980.Google Scholar
  27. 27.
    Shkolnikov V, McKee M, Leon DA. Changes in life expectancy in Russia in the mid-1990s. Lancet. 2001;357(9260):917–21.PubMedCrossRefGoogle Scholar
  28. 28.
    McKee M, Shkolnikov V, Leon DA. Alcohol is implicated in the fluctuations in cardiovascular disease in Russia since the 1980s. Ann Epidemiol. 2001;11(1):1–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Malyutina S, Bobak M, Kurilovitch S, et al. Relation between heavy and binge drinking and all-cause and cardiovascular mortality in Novosibirsk, Russia: a prospective cohort study. Lancet. 2002;360(9344):1448–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Marmot M, Bobak M. International comparators and poverty and health in Europe. BMJ. 2000;321(7269):1124–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Glei DA, Goldman N, Shkolnikov VM, et al. To what extent do biomarkers account for the large social disparities in health in Moscow? Soc Sci Med. 2013;77:164–72.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dmitri A. Jdanov
    • 1
    • 2
  • Alexander D. Deev
    • 3
  • Domantas Jasilionis
    • 1
  • Svetlana A. Shalnova
    • 3
  • Maria A. Shkolnikova
    • 4
  • Vladimir M. Shkolnikov
    • 1
    • 2
  1. 1.Max Planck Institute for Demographic ResearchRostockGermany
  2. 2.New Economic SchoolMoscowRussia
  3. 3.National Research Centre for Preventive Medicine of the Ministry of Health of the Russian FederationMoscowRussia
  4. 4.Federal Russian center for Children’s ArrhythmiaResearch Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations