Skip to main content
Log in

Association of adiponectin and leptin with relative telomere length in seven independent cohorts including 11,448 participants

  • GENETIC EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Oxidative stress and inflammation are major contributors to accelerated age-related relative telomere length (RTL) shortening. Both conditions are strongly linked to leptin and adiponectin, the most prominent adipocyte-derived protein hormones. As high leptin levels and low levels of adiponectin have been implicated in inflammation, one expects adiponectin to be positively associated with RTL while leptin should be negatively associated. Within the ENGAGE consortium, we investigated the association of RTL with adiponectin and leptin in seven independent cohorts with a total of 11,448 participants. We performed partial correlation analysis on Z-transformed RTL and LN-transformed leptin/adiponectin, adjusting for age and sex. In extended models we adjusted for body mass index (BMI) and C-reactive protein (CRP). Adiponectin showed a borderline significant association with RTL. This appeared to be determined by a single study and when the outlier study was removed, this association disappeared. The association between RTL and leptin was highly significant (r = −0.05; p = 1.81 × 10−7). Additional adjustment for BMI or CRP did not change the results. Sex-stratified analysis revealed no difference between men and women. Our study suggests that high leptin levels are associated with short RTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.

    Article  PubMed  CAS  Google Scholar 

  2. Conde J, et al. At the crossroad between immunity and metabolism: focus on leptin. Expert Rev Clin Immunol. 2010;6(5):801–8.

    Article  PubMed  Google Scholar 

  3. Hui X, et al. Adiponectin and cardiovascular health: an update. Br J Pharmacol. 2012;165(3):574–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Enriori PJ, et al. Leptin resistance and obesity. Obesity (Silver Spring). 2006;14(Suppl 5):254S–8S.

    Article  CAS  Google Scholar 

  5. Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol. 1978;120(1):33–53.

    Article  PubMed  CAS  Google Scholar 

  6. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–8.

    Article  PubMed  CAS  Google Scholar 

  7. Halvorsen TL, et al. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol. 2000;166(1):103–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kurz DJ, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117(Pt 11):2417–26.

    Article  PubMed  CAS  Google Scholar 

  9. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.

    Article  Google Scholar 

  10. von Zglinicki T, et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220(1):186–93.

    Article  Google Scholar 

  11. Brouilette S, et al. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23(5):842–6.

    Article  PubMed  CAS  Google Scholar 

  12. Brouilette SW, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369(9556):107–14.

    Article  PubMed  CAS  Google Scholar 

  13. Fitzpatrick AL, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.

    Article  PubMed  Google Scholar 

  14. Kalantar-Zadeh K, et al. Epidemiology of dialysis patients and heart failure patients. Semin Nephrol. 2006;26(2):118–33.

    Article  PubMed  Google Scholar 

  15. Aviv A, et al. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J Clin Endocrinol Metab. 2006;91(2):635–40.

    Article  PubMed  CAS  Google Scholar 

  16. Diaz VA, et al. Telomere length and adiposity in a racially diverse sample. Int J Obes (Lond). 2010;34(2):261–5.

    Article  CAS  Google Scholar 

  17. Njajou OT, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes (Lond). 2011;36:1176.

    Article  Google Scholar 

  18. Njajou OT, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes (Lond). 2012;36(9):1176–9.

    Article  CAS  Google Scholar 

  19. Valdes AM, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu H, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Al-Attas OS, et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol. 2010;163(4):601–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Aulchenko YS, et al. Linkage disequilibrium in young genetically isolated Dutch population. Eur J Hum Genet. 2004;12(7):527–34.

    Article  PubMed  CAS  Google Scholar 

  23. Pardo LM, et al. The effect of genetic drift in a young genetically isolated population. Ann Hum Genet. 2005;69(Pt 3):288–95.

    Article  PubMed  CAS  Google Scholar 

  24. Wichmann HE, et al. KORA-gen–resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen. 2005;67(Suppl 1):S26–30.

    Article  PubMed  Google Scholar 

  25. Schoenmaker M, et al. Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study. Eur J Hum Genet. 2006;14(1):79–84.

    PubMed  Google Scholar 

  26. Beekman M, et al. Chromosome 4q25, microsomal transfer protein gene, and human longevity: novel data and a meta-analysis of association studies. J Gerontol A Biol Sci Med Sci. 2006;61(4):355–62.

    Article  PubMed  Google Scholar 

  27. Moayyeri A et al. Cohort profile: TwinsUK and healthy ageing twin study. Int J Epidemiol. 2012.

  28. Heid IM, et al. Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes. 2006;55(2):375–84.

    Article  PubMed  CAS  Google Scholar 

  29. Kaprio J. Twin studies in Finland 2006. Twin Res Hum Genet. 2006;9(6):772–7.

    Article  PubMed  Google Scholar 

  30. Pietilainen KH, et al. Growth patterns in young adult monozygotic twin pairs discordant and concordant for obesity. Twin Res. 2004;7(5):421–9.

    Article  PubMed  Google Scholar 

  31. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.

    Article  PubMed  PubMed Central  Google Scholar 

  32. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R foundation for Statistical Computing; 2010.

    Google Scholar 

  33. Knudson JD, et al. Leptin and mechanisms of endothelial dysfunction and cardiovascular disease. Curr Hypertens Rep. 2008;10(6):434–9.

    Article  PubMed  CAS  Google Scholar 

  34. Okamoto Y, et al. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond). 2006;110(3):267–78.

    Article  CAS  Google Scholar 

  35. Considine RV, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.

    Article  PubMed  CAS  Google Scholar 

  36. Kistorp C, et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation. 2005;112(12):1756–62.

    Article  PubMed  CAS  Google Scholar 

  37. Kizer JR, et al. Adiponectin and risk of coronary heart disease in older men and women. J Clin Endocrinol Metab. 2008;93(9):3357–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Maiolino G, et al. Plasma adiponectin for prediction of cardiovascular events and mortality in high-risk patients. J Clin Endocrinol Metab. 2008;93(9):3333–40.

    Article  PubMed  CAS  Google Scholar 

  39. Menon V, et al. Adiponectin and mortality in patients with chronic kidney disease. J Am Soc Nephrol. 2006;17(9):2599–606.

    Article  PubMed  CAS  Google Scholar 

  40. Pilz S, et al. Adiponectin and mortality in patients undergoing coronary angiography. J Clin Endocrinol Metab. 2006;91(11):4277–86.

    Article  PubMed  CAS  Google Scholar 

  41. Jorsal A, et al. Serum adiponectin predicts all-cause mortality and end stage renal disease in patients with type I diabetes and diabetic nephropathy. Kidney Int. 2008;74(5):649–54.

    Article  PubMed  CAS  Google Scholar 

  42. Kollerits B, et al. Gender-specific association of adiponectin as a predictor of progression of chronic kidney disease: the Mild to Moderate Kidney Disease Study. Kidney Int. 2007;71(12):1279–86.

    Article  PubMed  CAS  Google Scholar 

  43. Saraheimo M, et al. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. Diabetes Care. 2008;31(6):1165–9.

    Article  PubMed  CAS  Google Scholar 

  44. van Himbergen TM, et al. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the framingham heart study. Arch Neurol. 2012;69:594.

    Article  PubMed  Google Scholar 

  45. Li S, et al. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302(2):179–88.

    Article  PubMed  CAS  Google Scholar 

  46. Costacou T, et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh epidemiology of diabetes complications study. Diabetologia. 2005;48(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  47. Pischon T, et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA. 2004;291(14):1730–7.

    Article  PubMed  CAS  Google Scholar 

  48. Schulze MB, et al. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes. 2005;54(2):534–9.

    Article  PubMed  CAS  Google Scholar 

  49. Arita Y, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  50. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996;271(18):10697–703.

    Article  PubMed  CAS  Google Scholar 

  51. Maeda N, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.

    Article  PubMed  CAS  Google Scholar 

  52. Han SH, et al. Antiatherosclerotic and anti-insulin resistance effects of adiponectin: basic and clinical studies. Prog Cardiovasc Dis. 2009;52(2):126–40.

    Article  PubMed  CAS  Google Scholar 

  53. Furuhashi M, et al. Possible impairment of transcardiac utilization of adiponectin in patients with type 2 diabetes. Diabetes Care. 2004;27(9):2217–21.

    Article  PubMed  Google Scholar 

  54. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.

    Article  PubMed  CAS  Google Scholar 

  55. Nordfjall K, et al. Telomere length is associated with obesity parameters but with a gender difference. Obesity (Silver Spring). 2008;16(12):2682–9.

    Article  Google Scholar 

  56. Horn T, Robertson BC, Gemmell NJ. The use of telomere length in ecology and evolutionary biology. Heredity (Edinb). 2010;105(6):497–506.

    Article  CAS  Google Scholar 

  57. Tsao TS, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem. 2003;278(50):50810–7.

    Article  PubMed  CAS  Google Scholar 

  58. Waki H, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278(41):40352–63.

    Article  PubMed  CAS  Google Scholar 

  59. Wang Y, et al. Proteomic and functional characterization of endogenous adiponectin purified from fetal bovine serum. Proteomics. 2004;4(12):3933–42.

    Article  PubMed  CAS  Google Scholar 

  60. Hara K, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29(6):1357–62.

    Article  PubMed  CAS  Google Scholar 

  61. Komura N, et al. Clinical significance of high-molecular weight form of adiponectin in male patients with coronary artery disease. Circ J. 2008;72(1):23–8.

    Article  PubMed  CAS  Google Scholar 

  62. Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci. 2009;364(1526):2063–78.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Newbold RR. Impact of environmental endocrine disrupting chemicals on the development of obesity. Hormones (Athens). 2010;9(3):206–17.

    Article  Google Scholar 

Download references

Acknowledgments

ERF

The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Erasmus MC, the Centre for Medical Systems Biology (CMSB), The European Community’s Seventh Framework Programme (FP7/2007–2013), ENGAGE Consortium, Grant agreement HEALTH-F4-2007- 201413 and Netherlands Consortium for Healthy Ageing (Grant 050-060-810). We are grateful to all general practitioners for their contributions, to Petra Veraart for her help in genealogy, Jeannette Vergeer for the supervision of the laboratory work and Peter Snijders for his help in data collection.

KORA

The KORA studies were financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and supported by Grants from the German Federal Ministry of Education and Research (BMBF). Part of this work was financed by the German National Genome Research Network (NGFN; NGFNPlus, project number 01GS0834) and supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. Telomere assays were funded by the ENGAGE consortium. This study was supported in part by a Grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.). The measurement of adiponectin in KORA F3 was partially funded by the “Tiroler Wissenschaftsfonds” (Project UNI-0407/29) and by the “Genomics of Lipid-associated Disorders—GOLD” of the “Austrian Genome Research Programme GEN-AU” to F. Kronenberg. We appreciate the technical assistance of Barbara Luhan.

LLS

We thank all participants of the Leiden Longevity Study. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2011) under Grant agreement no 259679. This study was supported by a Grant from the Innovation-Oriented Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology, and the Netherlands Consortium for Healthy Ageing (Grant 050-060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), and by Unilever Colworth.

TwinsUK

The study was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007–2013), ENGAGE project grant agreement (HEALTH-F4-2007-201413). The study also receives support from the Dept of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London. TDS is an NIHR senior Investigator and is holder of an ERC Advanced Principal Investigator award. Genotyping was performed by The Wellcome Trust Sanger Institute, support of the National Eye Institute via an NIH/CIDR genotyping project.

SAPHIR

The measurement of telomere length in the SAPHIR-study was funded by the Austrian Heart Fund to F. Kronenberg. The SAPHIR-study was partially supported by a grant from the Kamillo-Eisner Stiftung, Salzburger Forschungsgesellschaft, Oesterreichische Nationalbank (OeNB Nr. 13339) and the Paracelsus Medical University (FFF-PMU Nr. E-09/09/055-PAU) to B. Paulweber.

Finnish Twins

The study was supported by Helsinki University Hospital Research Funds, grants from Novo Nordisk, Diabetes Research Foundation, Finnish Foundation for Cardiovascular Research, Biomedicum Helsinki, Jalmari and Rauha Ahokas Foundation, and the Academy of Finland Centre of Excellence in Complex Disease Genetics. Data collection in FinnTwin16 and FinnTwin12 were supported by the National Institute of Alcohol Abuse and Alcoholism (Grants AA-12502 and AA-09203 to Richard J Rose), and the Academy of Finland (grants 44069, 205585, 118555, 141054 to JK) and by the EU funded projects TORNADO (FP7-KBBE-22270) and ENGAGE (FP7-HEALTH-F4-2007).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Broer.

Additional information

Linda Broer, Julia Raschenberger and Joris Deelen are shared first authorship.

Nilesh J Samani, Florian Kronenberg, Cornelia M. van Duijn and Karl-Heinz Ladwig are shared last authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broer, L., Raschenberger, J., Deelen, J. et al. Association of adiponectin and leptin with relative telomere length in seven independent cohorts including 11,448 participants. Eur J Epidemiol 29, 629–638 (2014). https://doi.org/10.1007/s10654-014-9940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-014-9940-1

Keywords

Navigation