Abstract
Previous studies concerning the association between physical activity (PA) and mortality in breast cancer yielded mixed results. We investigated the association by performing a meta-analysis of all available studies. Relevant studies were identified by searching PubMed and EMBASE to January 2014. We calculated the summary relative risk (RR) and 95 % confidence intervals (CIs) using random-effects models. The dose–response relationship was assessed by restricted cubic spline model and multivariate random-effect meta-regression. Sixteen cohort studies involving 42,602 patients of breast cancer were selected for meta-analysis. The analyses showed that patients who participated in any amount of PA before diagnosis had a RR of 0.82 (95 % CI 0.74–0.91) for breast cancer-specific mortality (vs. low PA). Those who participated in high PA and moderate PA before diagnosis had a RR of breast cancer-specific mortality of 0.81 (95 % CI 0.72–0.90) and 0.83 (95 % CI 0.73–0.94), respectively. Similar inverse associations of prediagnosis PA were found for all-cause mortality. Postdiagnosis PA on breast cancer-specific and all-cause mortality also showed the same results. Stratifying by body mass index (<25 vs. ≥25) or menopausal status, all the subgroups experienced benefits with PA, with a stronger mortality reduction among overweight women than normal weight women and among postmenopausal women than premenopausal women. A linear and significant dose–response association was only found for breast cancer-specific or all-cause mortality and prediagnosis PA (P for nonlinearity = 0.07 and 0.10, respectively). In conclusion, both prediagnosis and postdiagnosis PA were associated with reduced breast cancer-specific mortality and all-cause mortality.
Similar content being viewed by others
References
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi:10.3322/caac.21166.
Keegan TH, Milne RL, Andrulis IL, et al. Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the Breast Cancer Family Registry. Breast Cancer Res Treat. 2010;123(2):531–42. doi:10.1007/s10549-010-0774-6.
Monninkhof EM, Elias SG, Vlems FA, et al. Physical activity and breast cancer: a systematic review. Epidemiology (Cambridge, Mass.). 2007;18(1):137–57. doi:10.1097/01.ede.0000251167.75581.98.
Friedenreich CM. The role of physical activity in breast cancer etiology. Semin Oncol. 2010;37(3):297–302. doi:10.1053/j.seminoncol.2010.05.008.
Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–65. doi:10.1007/s12032-010-9536-x.
Dal Maso L, Zucchetto A, Talamini R, et al. Effect of obesity and other lifestyle factors on mortality in women with breast cancer. Int J Cancer. 2008;123(9):2188–94. doi:10.1002/ijc.23747.
Friedenreich CM, Gregory J, Kopciuk KA, Mackey JR, Courneya KS. Prospective cohort study of lifetime physical activity and breast cancer survival. Int J Cancer. 2009;124(8):1954–62. doi:10.1002/ijc.24155.
West-Wright CN, Henderson KD, Sullivan-Halley J, et al. Long-term and recent recreational physical activity and survival after breast cancer: the California Teachers Study. Cancer Epidemiol Biomarkers Prev. 2009;18(11):2851–9. doi:10.1158/1055-9965.epi-09-0538.
Emaus A, Veierod MB, Tretli S, et al. Metabolic profile, physical activity, and mortality in breast cancer patients. Breast Cancer Res Treat. 2010;121(3):651–60. doi:10.1007/s10549-009-0603-y.
Hellmann SS, Thygesen LC, Tolstrup JS, Gronbaek M. Modifiable risk factors and survival in women diagnosed with primary breast cancer: results from a prospective cohort study. Eur J Cancer Prev. 2010;19(5):366–73. doi:10.1097/CEJ.0b013e32833b4828.
Irwin ML, McTiernan A, Manson JE, et al. Physical activity and survival in postmenopausal women with breast cancer: results from the women’s health initiative. Cancer Prev Res (Phila). 2011;4(4):522–9. doi:10.1158/1940-6207.capr-10-0295.
Beasley JM, Kwan ML, Chen WY, et al. Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project. Breast Cancer Res Treat. 2012;131(2):637–43. doi:10.1007/s10549-011-1770-1.
Cleveland RJ, Eng SM, Stevens J, et al. Influence of prediagnostic recreational physical activity on survival from breast cancer. Eur J Cancer Prev. 2012;21(1):46–54. doi:10.1097/CEJ.0b013e3283498dd4.
Schmidt ME, Chang-Claude J, Vrieling A, et al. Association of pre-diagnosis physical activity with recurrence and mortality among women with breast cancer. Int J Cancer. 2013;133(6):1431–40. doi:10.1002/ijc.28130.
Rohan TE, Fu W, Hiller JE. Physical activity and survival from breast cancer. Eur J Cancer Prev. 1995;4(5):419–24.
Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2010 www.ohri.ca/programs/clinical_epidemiology/oxford_web.ppt.
Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86. doi:10.1001/jama.293.20.2479.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.
Abrahamson PE, Gammon MD, Lund MJ, et al. Recreational physical activity and survival among young women with breast cancer. Cancer. 2006;107(8):1777–85. doi:10.1002/cncr.22201.
Holick CN, Newcomb PA, Trentham-Dietz A, et al. Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(2):379–86. doi:10.1158/1055-9965.epi-07-0771.
Enger SM, Bernstein L. Exercise activity, body size and premenopausal breast cancer survival. Br J Cancer. 2004;90(11):2138–41. doi:10.1038/sj.bjc.6601820.
Irwin ML, Smith AW, McTiernan A, et al. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol. 2008;26(24):3958–64. doi:10.1200/jco.2007.15.9822.
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi:10.1002/sim.1186.
Hedges LV, Pigott TD. The power of statistical tests in meta-analysis. Psychol Methods. 2001;6(3):203–17.
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.
Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175(1):66–73. doi:10.1093/aje/kwr265.
Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006;6:40–57.
Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29(12):1282–97. doi:10.1002/sim.3602.
Pierce JP, Stefanick ML, Flatt SW, et al. Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. J Clin Oncol. 2007;25(17):2345–51. doi:10.1200/jco.2006.08.6819.
Borugian MJ, Sheps SB, Kim-Sing C, et al. Insulin, macronutrient intake, and physical activity: are potential indicators of insulin resistance associated with mortality from breast cancer? Cancer Epidemiol Biomarkers Prev. 2004;13(7):1163–72.
Sternfeld B, Weltzien E, Quesenberry CP Jr, et al. Physical activity and risk of recurrence and mortality in breast cancer survivors: findings from the LACE study. Cancer Epidemiol Biomarkers Prev. 2009;18(1):87–95. doi:10.1158/1055-9965.epi-08-0595.
Bertram LA, Stefanick ML, Saquib N, et al. Physical activity, additional breast cancer events, and mortality among early-stage breast cancer survivors: findings from the WHEL Study. Cancer Causes Control. 2011;22(3):427–35. doi:10.1007/s10552-010-9714-3.
Chen X, Lu W, Zheng W, et al. Exercise after diagnosis of breast cancer in association with survival. Cancer Prev Res (Phila). 2011;4(9):1409–18. doi:10.1158/1940-6207.capr-10-0355.
Rodriguez San Felipe MJ, Aguilar Martinez A, Manuel YKB. Influence of body weight on the prognosis of breast cancer survivors. Nutritional approach after diagnosis. Nutr Hosp. 2013;28(6):1829–41. doi:10.3305/nutrhosp.v28in06.6981.
Etemadi A, Abnet CC, Kamangar F, et al. Impact of body size and physical activity during adolescence and adult life on overall and cause-specific mortality in a large cohort study from Iran. Eur J Epidemiol. 2014;. doi:10.1007/s10654-014-9883-6.
Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91. doi:10.1038/nrc1408.
Fontein DB, de Glas NA, Duijm M, et al. Age and the effect of physical activity on breast cancer survival: a systematic review. Cancer Treat Rev. 2013;39(8):958–65. doi:10.1016/j.ctrv.2013.03.008.
Ligibel JA, Campbell N, Partridge A, et al. Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol. 2008;26(6):907–12. doi:10.1200/JCO.2007.12.7357.
Autenrieth C, Schneider A, Doring A, et al. Association between different domains of physical activity and markers of inflammation. Med Sci Sports Exerc. 2009;41(9):1706–13. doi:10.1249/MSS.0b013e3181a15512.
Friedenreich CM, Neilson HK, Woolcott CG, et al. Inflammatory marker changes in a yearlong randomized exercise intervention trial among postmenopausal women. Cancer Prev Res (Phila). 2012;5(1):98–108. doi:10.1158/1940-6207.CAPR-11-0369.
Morris PG, Hudis CA, Giri D, et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila). 2011;4(7):1021–9. doi:10.1158/1940-6207.CAPR-11-0110.
Cher MD, Louise AB, Charles EM, et al. Is accelerometer-measured physical activity associated with urinary estrogens and estrogen metabolites among postmenopausal women? Cancer Res. 2013;73(8 Suppl). doi:10.1158/1538-7445.AM2013-2519.
Friedenreich CM, Woolcott CG, McTiernan A, et al. Alberta physical activity and breast cancer prevention trial: sex hormone changes in a year-long exercise intervention among postmenopausal women. J Clin Oncol. 2010;28(9):1458–66. doi:10.1200/JCO.2009.24.9557.
Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast. 2013;22(Suppl 2):S38–43. doi:10.1016/j.breast.2013.07.007.
Acknowledgments
This study was supported by the National Natural Science Foundation of China (81272470).
Conflict of interest
The authors declare no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhong, S., Jiang, T., Ma, T. et al. Association between physical activity and mortality in breast cancer: a meta-analysis of cohort studies. Eur J Epidemiol 29, 391–404 (2014). https://doi.org/10.1007/s10654-014-9916-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10654-014-9916-1