Skip to main content

Sex differences in health and mortality in Moscow and Denmark

Abstract

In high income countries females outlive men, although they generally report worse health, the so-called male–female health-survival paradox. Russia has one of the world’s largest sex difference in life expectancy with a male disadvantage of more than 10 years. We compare components of the paradox between Denmark and Moscow by examining sex differences in mortality and several health measures. The Human Mortality Database and the Russian Fertility and Mortality Database were used to examine sex differences in all-cause death rates in Denmark, Russia, and Moscow in 2007–2008. Self-reported health data were obtained from the Study of Middle-Aged Danish Twins (n = 4,314), the Longitudinal Study of Aging Danish Twins (n = 4,731), and the study of Stress, Aging, and Health in Russia (n = 1,800). In both Moscow and Denmark there was a consistent female advantage at ages 55–89 years in survival and a male advantage in self-rated health, physical functioning, and depression symptomatology. Only on cognitive tests males performed similarly to or worse than women. Nevertheless, Muscovite males had more than twice higher mortality at ages 55–69 years compared to Muscovite women, almost double the ratio in Denmark. The present study showed that despite similar directions of sex differences in health and mortality in Moscow and Denmark, the male–female health-survival paradox is very pronounced in Moscow suggesting a stronger sex-specific disconnect between health indicators and mortality among middle-aged and young-old Muscovites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barford A, Dorling D, Smith GD, Shaw M. Life expectancy: women now on top everywhere. BMJ. 2006;332:808.

    PubMed Central  PubMed  Article  Google Scholar 

  2. Gjonca A, Tomassini C, Toson B, Smallwood S. Sex differences in mortality, a comparison of the United Kingdom and other developed countries. Health Stat Q. 2005;26:6–16.

    PubMed  Google Scholar 

  3. Crimmins EM, Kim JK, Sole-Auro A. Gender differences in health: results from SHARE, ELSA and HRS. Eur J Public Health. 2011;21:81–91.

    PubMed Central  PubMed  Article  Google Scholar 

  4. Oksuzyan A, Crimmins E, Saito Y, O’Rand A, Vaupel JW, Christensen K. Cross-national comparison of sex differences in health and mortality in Denmark, Japan and the US. Eur J Epidemiol. 2010;25:471–80.

    PubMed Central  PubMed  Article  Google Scholar 

  5. Andersen-Ranberg K, Petersen I, Frederiksen H, Mackenbach J, Christensen K. Cross-national differences in grip strength among 50+ year-old Europeans: results from the SHARE study. Eur J Ageing. 2009;6:227–36.

    Article  Google Scholar 

  6. Case A, Paxson C. Sex differences in morbidity and mortality. Demography. 2005;42:189–214.

    PubMed  Article  Google Scholar 

  7. Nathanson CA. Illness and the feminine role: a theoretical review. Soc Sci Med. 1975;9:57–62.

    CAS  PubMed  Article  Google Scholar 

  8. Crimmins EM, Beltran-Sanchez H. Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol. 2011;66B:75–86.

    Article  Google Scholar 

  9. Truelsen T, Piechowski-Jóźwiak B, Bonita R, Mathers C, Bogousslavsky J, Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol. 2006;13:581–98.

    CAS  PubMed  Article  Google Scholar 

  10. Jarner SF, Kryger EM, Dengsoe C. The evolution of death rates and life expectancy in Denmark. Scand Actuar J. 2008;2:147–73.

    Article  Google Scholar 

  11. HMD. Human Mortality Database. University of California, Berkeley and Max Planck Institute for Demographic Research. (www.mortality.org. Accessed 06 December 2012.

  12. Mesle F. Mortality in Central and Eastern Europe: long-term trends and recent upturns. Demogr Res 2004; Special Collection 2:45–70.

    Google Scholar 

  13. Shkolnikov V, Meslé F. The Russian epidemiological crisis as mirrored by mortality trends. In: Da Vanzo J, editor. Russia’s demographic “crisis”. Santa Monica: RAND Center for Russian and Eurasian Studies; 1996. p. 113–61.

    Google Scholar 

  14. Field M. Gender gaps in mortality. Dissimilarities in mortality rates: analysis of standard data. In: Shkolnikov V, Andreev E, Maleva T, editors. Inequality and mortality in Russia. Moscow: Moscow Carnegie Center; 2000. p. 20–3.

    Google Scholar 

  15. Bobak M, Kristenson M, Pikhart H, Marmot M. Life span and disability: a cross sectional comparison of Russian and Swedish community based data. BMJ. 2004;329:767.

    PubMed Central  PubMed  Article  Google Scholar 

  16. Andreev EM, McKee M, Shkolnikov VM. Health expectancy in the Russian Federation: a new perspective on the health divide in Europe. Bull World Health Organ. 2003;81:778–87.

    PubMed Central  PubMed  Google Scholar 

  17. Bobak M, Richards M, Malyutina S, et al. Association between year of birth and cognitive functions in Russia and the Czech Republic: cross-sectional results of the HAPIEE study. Neuroepidemiol. 2009;33:231–9.

    Article  Google Scholar 

  18. Christensen K, Holm NV, McGue M, Corder L, Vaupel JW. A Danish population-based twin study on general health in the elderly. J Aging Health. 1999;11:49–64.

    CAS  PubMed  Article  Google Scholar 

  19. Gaist D, Bathum L, Skytthe A, et al. Strength and anthropometric measures in identical and fraternal twins: no evidence of masculinization of females with male co-twins. Epidemiology. 2000;11:340–3.

    CAS  PubMed  Article  Google Scholar 

  20. Skytthe A, Christiansen L, Kyvik KO, et al. The Danish Twin Registry: linking surveys, national registers, and biological information. Twin Res. 2012;16:1–8.

    Google Scholar 

  21. Skytthe A, Kyvik K, Holm NV, Vaupel JW, Christensen K. The Danish Twin Registry: 127 birth cohorts of twins. Twin Res. 2002;5:352–7.

    PubMed  Article  Google Scholar 

  22. Christensen K, McGue M. Commentary: Twins, worms and life course epidemiology. Int J Epidemiol. 2012;41:1010–1.

    PubMed  Article  Google Scholar 

  23. Christensen K, Basso O, Kyvik KO, et al. Fecundability of female twins. Epidemiology. 1998;9:189–92.

    CAS  PubMed  Article  Google Scholar 

  24. Christensen K, Petersen I, Skytthe A, Herskind AM, McGue M, Bingley P. Comparison of academic performance of twins and singletons in adolescence: follow-up study. BMJ. 2006;333:1095–1097.

    PubMed Central  PubMed  Article  Google Scholar 

  25. Christensen K, Vaupel JW, Holm NV, Yashin AI. Mortality among twins after age 6: fetal origins hypothesis versus twin method. BMJ. 1995;310:432–6.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Christensen K, Wienke A, Skytthe A, Holm NV, Vaupel JW, Yashin AI. Cardiovascular mortality in twins and the fetal origins hypothesis. Twin Res. 2001;4:344–9.

    CAS  PubMed  Article  Google Scholar 

  27. Vågerö D, Leon D. Ischaemic heart disease and low birth weight: a test of the fetal-origins hypothesis from the Swedish Twin Registry. Lancet. 1994;343:260–3.

    PubMed  Article  Google Scholar 

  28. Oeberg S, Cnattingius S, Sandin S, Lichtenstein P, Morley R, Iliadou AN. Twinship influence on morbidity and mortality across the lifespan. Int J Epidemiol. 2012;41:1002–9.

    Article  Google Scholar 

  29. Shkolnikova M, Shalnova S, Shkolnikov V, et al. Biological mechanisms of disease and death in Moscow: rationale and design of the survey on Stress Aging and Health in Russia (SAHR). BMC Public Health. 2009;9:293.

    PubMed Central  PubMed  Article  Google Scholar 

  30. Center for Demograqphic Research at the New Economic School. Russian Mortality and Fertility Database (RMFD). http://www.demogr.nes.ru/index.php/ru/demogr_indicat/data.

  31. Andreev EM. About the accuracy of the Russia censuses and validity of different information sources [in Russian]. Voprosi statistiki [Quest Stat] 2012;11:21–35.

  32. Jdanov DA, Scholz RD, Shkolnikov VM. Official population statistics and the Human Mortality Database estimates of populations aged 80+ in Germany and nine other European countries. Demogr Res. 2005;13:335–62.

    Article  Google Scholar 

  33. Christensen K, McGue M, Yashin A, Iachine I, Holm NV, Vaupel JW. Genetic and environmental Influences on functional abilities in Danish twins aged 75 years and older. J Gerontol A Biol Sci Med Sci. 2000;55:M446–52.

    CAS  PubMed  Article  Google Scholar 

  34. Avlund K, Davidsen M, Schultz-Larsen K. Changes in functional ability from ages 70 to 75: a Danish longitudinal study. J Aging Health. 1995;7:254–82.

    CAS  PubMed  Article  Google Scholar 

  35. Schultz-Larsen K, Avlund K, Kreiner S. Functional ability of community dwelling elderly. Criterion-related validity of a new measure of functional ability. J Clin Epidemiol. 1992;45:1315–26.

    CAS  PubMed  Article  Google Scholar 

  36. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged: the index of ADL: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–9.

    CAS  PubMed  Article  Google Scholar 

  37. Christensen K, Frederiksen H, Vaupel JW, McGue M. Age trajectories of genetic variance in physical functioning: a longitudinal study of Danish twins aged 70 years and older. Behav Genet. 2003;33:125–36.

    PubMed  Article  Google Scholar 

  38. Ware J, Kosinski M, Keller S. SF-36 physical and mental. Health summary scales: a user’s manual. Boston, MA: New England Medical Center, The Health Institute; 1994.

    Google Scholar 

  39. Ware J, Snow K, Kosinski M, Gandek B. SF-36 health survey manual and interpretation. Guide Boston, MA: New England Medical Center, The Health Institute; 1993.

    Google Scholar 

  40. Folstein MF, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading cognitive state of patients for the clinicians. J Psychiatr Res. 1975;12:189–98.

    CAS  PubMed  Article  Google Scholar 

  41. Roth M, Tym E, Mountjoy CQ, et al. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry. 1986;149:698–709.

    CAS  PubMed  Article  Google Scholar 

  42. McGue M, Christensen K. Genetic and environmental contributions to depression symptomatology: evidence from Danish twins 75 years of age and older. J Abnorm Psychol. 1997;106:439–48.

    CAS  PubMed  Article  Google Scholar 

  43. Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates: a new WHO standard. Geneva: World Health Organization; 2001. p. 1–12.

    Google Scholar 

  44. StataCorp. Stata statistical software: release 11.2. In: College Station, TX 77845, USA: StataCorp LP; 2012.

  45. Verbrugge LM. A health profile of older women with comparisons to older men. Res Aging. 1984;6:291–322.

    CAS  PubMed  Article  Google Scholar 

  46. Meslé F, Shkolnikov VM, Vallin J. Brusque montée des morts violentes en Russie. Population. 1994;3:780–90.

    Article  Google Scholar 

  47. Lawlor DA, Ebrahim S, Davey Smith G. Sex matters: secular and geographical trends in sex differences in coronary heart disease mortality. BMJ. 2001;323:541–5.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    PubMed  Article  Google Scholar 

  49. Petrea RE, Beiser AS, Seshadri S, Kelly-Hayes M, Kase CS, Wolf PA. Gender differences in stroke incidence and poststroke disability in the Framingham heart study. Stroke. 2009;40:1032–7.

    PubMed Central  PubMed  Article  Google Scholar 

  50. Wolf-Maier K, Cooper RS, Banegas JR, et al. HYpertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289:2363–9.

    PubMed  Article  Google Scholar 

  51. Metelskaya VA, Shkolnikova MA, Shalnova SA, et al. Prevalence, components, and correlates of metabolic syndrome (MetS) among elderly Muscovites. Arch Gerontol Geriatr. 2012;55:231–7.

    PubMed Central  PubMed  Article  Google Scholar 

  52. Carlson P. Risk behaviours and self rated health in Russia 1998. J Epidemiol Commun Health. 2001;55:806–17.

    CAS  Article  Google Scholar 

  53. Davidov MI, Axel EM. Zabolevaemost zlokachestvennimi novoobrazovaniyami naseleniya Rossii i stran SNG v 2007 [Prevalence of malignant tumor in the population of Russia and NIS] (in Russian). J NN Blokhin Russ Cancer Res Cent (RAMS). 2009;20:52–74.

    Google Scholar 

  54. Perlman F. Drinking in transition: trends in alcohol consumption in Russia 1994–2004. BMC Public Health. 2010;10:691.

    PubMed Central  PubMed  Article  Google Scholar 

  55. Perlman F, Bobak M, Gilmore A, McKee M. Trends in the prevalence of smoking in Russia during the transition to a market economy. Tob Control. 2007;16:299–305.

    PubMed Central  PubMed  Article  Google Scholar 

  56. Kjoller M, Juel K, Kamper-Jorgensen F. Public health report, Denmark 2007. Summary. Copenhagen: National Institute of Public Health; 2007.

    Google Scholar 

  57. Andreev E, Shkolnikov V. Dissimilarities in mortality rates: analysis of individual data. In: Shkolnikov V, Andreev E, Maleva T, editors. Inequality and mortality in Russia. Moscow: Moscow Carnegie Center; 2000. p. 70–3.

    Google Scholar 

  58. Shkolnikov VM, Field M, Andreev EM. Russia: socioeconomic dimensions of the gender gap in mortality. In: Evans T, Whitehead M, Diderichsen F, Bhuiya A, editors. Challenging inequities in health: from ethics to action. New York: Oxford University Press; 2001. p. 139–56.

    Google Scholar 

  59. Leon DA, Chenet L, Shkolnikov VM, et al. Huge variation in Russian mortality rates 1984–94: artefact, alcohol, or what? Lancet. 1997;350:383–8.

    CAS  PubMed  Article  Google Scholar 

  60. Watson P. Explaining rising mortality among men in Eastern Europe. Soc Sci Med. 1995;41:923–34.

    CAS  PubMed  Article  Google Scholar 

  61. Oksuzyan A, Petersen I, Stovring H, Bingley P, Vaupel JW, Christensen K. The male-female health-survival paradox: a survey and register study of the impact of sex-specific selection and information bias. Ann Epidemiol. 2009;19:504–11.

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the US National Institute of Health, P01AG031719, and the VELUX foundation. SAHR was funded by the National Institute on Aging (Grant Number R01AG026786). None had any role in the design, execution, analysis, and interpretation of data, or writing of the study. Vladimir Shkolnikov was partly funded by the Dynasty Foundation (Russia). We are grateful to Evgeny Andreev at the New Economic School in Moscow, and Alexander Deev at the National Research Center for Preventive Medicine (NRCPM) in Moscow for massive data cleaning and processing, to Svetlana Shalnova at the NRCPM for major contributions to the collection, handling and processing various biological markers and for her help in ensuring the quality of these data, and to Viktoria Metelskaya at the NRCPM for providing consultation on the biochemical measurements.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study involves secondary data analysis existing survey data. The LSADT and MADT have been through review and are approved by the ethical committee assigned through the Danish National Committee on Biomedical Research and the Danish Data Protection Agency. The SAHR was approved by the Ethical Committee of the State Research Centre for Preventive Medicine, Moscow, Russia and the Institutional Review Board at Duke University, Durham, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oksuzyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oksuzyan, A., Shkolnikova, M., Vaupel, J.W. et al. Sex differences in health and mortality in Moscow and Denmark. Eur J Epidemiol 29, 243–252 (2014). https://doi.org/10.1007/s10654-014-9893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-014-9893-4

Keywords

  • Sex differences
  • Cross-national comparison
  • Health
  • Mortality
  • Russia
  • Denmark