Skip to main content

The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities

Abstract

The Maastricht Study is an extensive phenotyping study that focuses on the etiology of type 2 diabetes (T2DM), its classic complications, and its emerging comorbidities. The study uses state-of-the-art imaging techniques and extensive biobanking to determine health status in a population-based cohort of 10,000 individuals that is enriched with T2DM individuals. Enrollment started in November 2010 and is anticipated to last 5–7 years. The Maastricht Study is expected to become one of the most extensive phenotyping studies in both the general population and T2DM participants world-wide. The Maastricht study will specifically focus on possible mechanisms that may explain why T2DM accelerates the development and progression of classic complications, such as cardiovascular disease, retinopathy, neuropathy and nephropathy and of emerging comorbidities, such as cognitive decline, depression, and gastrointestinal, musculoskeletal and respiratory diseases. In addition, it will also examine the association of these variables with quality of life and use of health care resources. This paper describes the rationale, overall study design, recruitment strategy and methods of basic measurements, and gives an overview of all measurements that are performed within The Maastricht Study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AGEs:

Advanced glycation end products

ATC-code:

Anatomical therapeutic chemical classification system

DVA:

Dynamic vessel analysis

ECG:

Electrocardiogram

EMG:

Electromyogram

HR-pQCT:

High resolution peripheral quantitative computed tomography

IFG:

Impaired fasting glucose

IGT:

Impaired glucose tolerance

MVPA:

Moderate-to-vigorous physical activity

NGT:

Normal glucose tolerance

OCT:

Optical coherence tomography

OGTT:

Oral glucose tolerance test

T2DM:

Type 2 diabetes mellitus

VFA:

Vertebral fracture assessment

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    PubMed  Article  Google Scholar 

  2. WHO. The global burden of disease: 2004 update. 2008. http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf.

  3. Bloom DE, Cafiero ET, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S, Feigl AB, Gaziano T, Mowafi M, Pandya A, Prettner K, Rosenberg L, Seligman B, Stein AZ, Weinstein C. The global economic burden of noncommunicable diseases. Geneva: World Economic Forum; 2011.

    Google Scholar 

  4. Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003;290(14):1884–90.

    CAS  PubMed  Article  Google Scholar 

  5. Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia. 2004;47(10):1747–59.

    CAS  PubMed  Article  Google Scholar 

  6. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.

    CAS  PubMed  Article  Google Scholar 

  7. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008;31(3):596–615.

    Google Scholar 

  8. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169–81. doi:10.1016/s0140-6736(11)60614-4.

    PubMed  Article  Google Scholar 

  9. Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(Suppl 3):S16–21.

    CAS  PubMed  Article  Google Scholar 

  10. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.

    PubMed Central  PubMed  Article  Google Scholar 

  11. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. doi:10.1016/s0140-6736(10)60484-9.

    CAS  PubMed  Article  Google Scholar 

  12. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care. 2004;27(Suppl 1):S79–83.

    PubMed  Google Scholar 

  13. Icks A, Haastert B, Trautner C, Giani G, Glaeske G, Hoffmann F. Incidence of lower-limb amputations in the diabetic compared to the non-diabetic population findings from nationwide insurance data, Germany, 2005–2007. Exp Clin Endocrinol Diabetes. 2009;117(9):500–4. doi:10.1055/s-0029-1225333.

    CAS  PubMed  Article  Google Scholar 

  14. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51. doi:10.1590/S0042-96862004001100009.

    PubMed Central  PubMed  Google Scholar 

  15. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2011.

  16. Wright JM, Musini VM. First-line drugs for hypertension. Cochrane Database of Syst Rev. 2009;3:CD001841. doi:10.1002/14651858.CD001841.pub2.

    Google Scholar 

  17. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78. doi:10.1016/S0140-6736(05)67394-1.

    CAS  PubMed  Article  Google Scholar 

  18. Carnethon MR, Biggs ML, Barzilay J, Kuller LH, Mozaffarian D, Mukamal K, et al. Diabetes and coronary heart disease as risk factors for mortality in older adults. Am J Med. 2010;123(6):556e1-9. doi:10.1016/j.amjmed.2009.11.023.

    Article  Google Scholar 

  19. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29. doi:10.1016/S0140-6736(12)61031-9.

    PubMed Central  PubMed  Article  Google Scholar 

  20. Lollgen H, Bockenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med. 2009;30(3):213–24. doi:10.1055/s-0028-1128150.

    CAS  PubMed  Article  Google Scholar 

  21. Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, et al. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS ONE. 2012;7(4):e34916. doi:10.1371/journal.pone.0034916.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012. doi:10.1007/s00125-012-2677-z.

    PubMed  Google Scholar 

  23. Bankoski A, Harris TB, McClain JJ, Brychta RJ, Caserotti P, Chen KY, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.

    PubMed Central  PubMed  Article  Google Scholar 

  24. Cooper AR, Sebire S, Montgomery AA, Peters TJ, Sharp DJ, Jackson N, et al. Sedentary time, breaks in sedentary time and metabolic variables in people with newly diagnosed type 2 diabetes. Diabetologia. 2012;55(3):589–99. doi:10.1007/s00125-011-2408-x.

    CAS  PubMed  Article  Google Scholar 

  25. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369–71. doi:10.2337/dc07-1795.

    PubMed  Article  Google Scholar 

  26. Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, Van Domelen DR, et al. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS ONE. 2012;7(6):e37696. doi:10.1371/journal.pone.0037696.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. Gallo V, Mackenbach JP, Ezzati M, Menvielle G, Kunst AE, Rohrmann S, et al. Social inequalities and mortality in Europe–results from a large multi-national cohort. PLoS ONE. 2012;7(7):e39013. doi:10.1371/journal.pone.0039013.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Espelt A, Borrell C, Roskam AJ, Rodriguez-Sanz M, Stirbu I, Dalmau-Bueno A, et al. Socioeconomic inequalities in diabetes mellitus across Europe at the beginning of the 21st century. Diabetologia. 2008;51(11):1971–9. doi:10.1007/s00125-008-1146-1.

    CAS  PubMed  Article  Google Scholar 

  29. www.nhg.org/standaarden/samenvatting/cardiovasculair-risicomanagement.

  30. van Keulen HM, Mesters I, Brug J, Ausems M, Campbell M, Resnicow K, et al. Vitalum study design: RCT evaluating the efficacy of tailored print communication and telephone motivational interviewing on multiple health behaviors. BMC Public Health. 2008;8:216. doi:10.1186/1471-2458-8-216.

    PubMed Central  PubMed  Article  Google Scholar 

  31. van Keulen HM, Mesters I, Ausems M, van Breukelen G, Campbell M, Resnicow K, et al. Tailored print communication and telephone motivational interviewing are equally successful in improving multiple lifestyle behaviors in a randomized controlled trial. Ann Behav Med. 2011;41(1):104–18. doi:10.1007/s12160-010-9231-3.

    PubMed Central  PubMed  Article  Google Scholar 

  32. Resnicow K, McCarty F, Blissett D, Wang T, Heitzler C, Lee RE. Validity of a modified CHAMPS physical activity questionnaire among African-Americans. Med Sci Sports Exerc. 2003;35(9):1537–45. doi:10.1249/01.MSS.0000084419.64044.2B.

    PubMed  Article  Google Scholar 

  33. Harada ND, Chiu V, King AC, Stewart AL. An evaluation of three self-report physical activity instruments for older adults. Med Sci Sports Exerc. 2001;33(6):962–70.

    CAS  PubMed  Article  Google Scholar 

  34. McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.

    CAS  PubMed  Article  Google Scholar 

  35. Ware JESK, Kosinski M, et al. SF-36 health survey manual and interpretation guide. Boston, MA: New England Medical Center; 1993.

    Google Scholar 

  36. Brooks R. EuroQol: the current state of play. Health Policy. 1996;37(1):53–72.

    CAS  PubMed  Article  Google Scholar 

  37. Suurmeijer TP, Doeglas DM, Moum T, Briancon S, Krol B, Sanderman R, et al. The Groningen Activity Restriction Scale for measuring disability: its utility in international comparisons. Am J Public Health. 1994;84(8):1270–3.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. WHO. Definition and Diagnosis of diabetes mellitus and intermediate hyperglycemia. 2006. www.whoint/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_newpdf.

  39. Leng GC, Fowkes FG. The Edinburgh Claudication Questionnaire: an improved version of the WHO/Rose Questionnaire for use in epidemiological surveys. J Clin Epidemiol. 1992;45(10):1101–9.

    CAS  PubMed  Article  Google Scholar 

  40. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36. doi:10.1016/j.pain.2004.12.010.

    PubMed  Article  Google Scholar 

  41. Snoek FJ, Pouwer F, Welch GW, Polonsky WH. Diabetes-related emotional distress in Dutch and U.S. diabetic patients: cross-cultural validity of the problem areas in diabetes scale. Diabetes Care. 2000;23(9):1305–9.

    CAS  PubMed  Article  Google Scholar 

  42. Van der Elst W, van Boxtel MP, van Breukelen GJ, Jolles J. Rey’s verbal learning test: normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. J Int Neuropsychol Soc. 2005;11(3):290–302.

    PubMed  Google Scholar 

  43. Luteijn F, Barelds DPH. GIT-2, Groninger intelligentietest 2. Handleiding. Amsterdam: Harcourt Test Publishers; 2004.

    Google Scholar 

  44. Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment. 2006;13(1):62–79.

    PubMed  Article  Google Scholar 

  45. Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. The concept shifting test: adult normative data. Psychol Assess. 2006;18(4):424–32.

    PubMed  Article  Google Scholar 

  46. Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. Normative data for the Animal, Profession and Letter M Naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex. J Int Neuropsychol Soc. 2006;12(1):80–9.

    PubMed  Google Scholar 

  47. van der Elst W, van Boxtel MP, van Breukelen GJ, Jolles J. The letter digit substitution test: normative data for 1,858 healthy participants aged 24–81 from the Maastricht Aging Study (MAAS): influence of age, education, and sex. J Clin Exp Neuropsychol. 2006;28(6):998–1009.

    PubMed  Article  Google Scholar 

  48. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    CAS  PubMed  Article  Google Scholar 

  49. Derix T, Hijdra A. Camdex-N protocol. Cambridge Examination for Mental Disorders of the Elderly. 1992.

  50. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33;quiz 4–57.

    PubMed  Google Scholar 

  51. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7. doi:10.1001/archinte.166.10.1092.

    PubMed  Article  Google Scholar 

  53. Launer LJ, Terwindt GM, Ferrari MD. The prevalence and characteristics of migraine in a population-based cohort: the GEM study. Neurology. 1999;53(3):537–42.

    CAS  PubMed  Article  Google Scholar 

  54. Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorders. 2nd ed. Cephalalgia. 2004;24(Suppl 1):9–160.

  55. Stewart WF, Lipton RB, Dowson AJ, Sawyer J. Development and testing of the Migraine Disability Assessment (MIDAS) Questionnaire to assess headache-related disability. Neurology. 2001;56(6 Suppl 1):S20–8.

    CAS  PubMed  Article  Google Scholar 

  56. Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–38. doi:10.1056/NEJMoa0909883.

    CAS  PubMed  Article  Google Scholar 

  57. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

    CAS  PubMed  Google Scholar 

  58. Rentz AM, Kahrilas P, Stanghellini V, Tack J, Talley NJ, de la Loge C, et al. Development and psychometric evaluation of the patient assessment of upper gastrointestinal symptom severity index (PAGI-SYM) in patients with upper gastrointestinal disorders. Qual Life Res. 2004;13(10):1737–49.

    CAS  PubMed  Article  Google Scholar 

  59. Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32(9):920–4. doi:10.3109/00365529709011203.

    CAS  PubMed  Article  Google Scholar 

  60. Molag ML, de Vries JH, Duif N, Ocke MC, Dagnelie PC, Goldbohm RA, et al. Selecting informative food items for compiling food-frequency questionnaires: comparison of procedures. Br J Nutr. 2010;104(3):446–56. doi:10.1017/S0007114510000401.

    CAS  PubMed  Article  Google Scholar 

  61. Kersten P, Cardol M, George S, Ward C, Sibley A, White B. Validity of the impact on participation and autonomy questionnaire: a comparison between two countries. Disabil Rehabil. 2007;29(19):1502–9. doi:10.1080/09638280601030066.

    PubMed  Article  Google Scholar 

  62. McCallister L, Fischer CS. A procedure for surveying personal networks. Sociol Methods Res. 1978;7(2):131–48.

    Article  Google Scholar 

  63. Goldberg LR. An alternative “description of personality”: the big-five factor structure. J Pers Soc Psychol. 1990;59(6):1216–29.

    CAS  PubMed  Article  Google Scholar 

  64. Denollet J. DS14: standard assessment of negative affectivity, social inhibition, and Type D personality. Psychosom Med. 2005;67(1):89–97. doi:10.1097/01.psy.0000149256.81953.49.

    PubMed  Article  Google Scholar 

  65. Lamberts PHG, Steenbakkers M, Thijssen NHB, Backus-Mujakovic S, de Vreede JJM, Hajema KJ, Poos MJJC. Een gezonde kijk op Zuid-Limburg. Regionale Volksgezondheid Toekomst Verkenning 2010. GGD Zuid-Limburg; 2010.

  66. Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol. 1991;7(4):403–22.

    CAS  PubMed  Article  Google Scholar 

  67. Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56(3):872–8. doi:10.2337/db06-0922.

    CAS  PubMed  Article  Google Scholar 

  68. Mooy JM, Grootenhuis PA, de Vries H, Valkenburg HA, Bouter LM, Kostense PJ, et al. Prevalence and determinants of glucose intolerance in a Dutch Caucasian population. The Hoorn Study. Diabetes Care. 1995;18(9):1270–3.

    CAS  PubMed  Article  Google Scholar 

  69. Schram MT, Kostense PJ, Van Dijk RA, Dekker JM, Nijpels G, Bouter LM, et al. Diabetes, pulse pressure and cardiovascular mortality: the Hoorn Study. J Hypertens. 2002;20(9):1743–51.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the European Regional Development Fund as part of OP-ZUID, the province of Limburg, the department of Economic Affairs of the Netherlands (grant 31O.041), Stichting the Weijerhorst, the Pearl String Initiative Diabetes, the Cardiovascular Center Maastricht, Cardiovascular Research Institute Maastricht (CARIM), School for Nutrition, Toxicology and Metabolism (NUTRIM), Stichting Annadal, Health Foundation Limburg and by unrestricted grants from Janssen, Novo Nordisk and Sanofi. The regional association of General Practitioners (Zorg in Ontwikkeling (ZIO)) is gratefully acknowledged for their contribution to The Maastricht Study, enabling the invitation of individuals with T2DM by using information from their web-based electronic health record. Members of The Maastricht Study Group in alphabetic order: L.J. Anteunis, I.C.W. Arts, P. van Assema, W.H. Backes, T. Berendschot, A. Boonen, H. Bosma, H.P. Brunner- La Rocca, H.J. Crijns, P.C. Dagnelie, J.W. Dallinga, F. de Vries, H. de Vries, N.K. de Vries, N.H.T.M. Dukers-Muijrers, P.J. Emans, S. Evers, P.P. Geusens, A.P. Gorgels, R.M.A. Henry, D. Hilkman, C.J.P.A. Hoebe, A.P. Hoeks, P.A. Hofman, A.J. Houben, J.F.A. Jansen, M.A. Joore, M.E. Kooi, A. Koster, D. Kotz, S.P.J. Kremers, A.A. Kroon, A.A. Masclee, W.H. Mess, I. Mesters, J.W. Muris, C. Neef, N. Reijven, R.S. Reneman, J.P. Reulen, M. Sastry, H.H. Savelberg, P. Savelkoul, C.G. Schalkwijk, N.C. Schaper, F.J. van Schooten, U. Schotten, J.S. Schouten, M.T. Schram, S.J.S. Sep, J.A. Staessen, C.D.A. Stehouwer, E.E. Stobberingh, M.P.J. van Boxtel, J.P. van den Bergh, C.P. van der Grinten, C.J. van der Kallen, S. van der Linden, M.C. van Dongen, T.A. van Geel, R.J. van Oostenbrugge, L. van Osch, F.H. Vanmolkot, F.R.J. Verhey, G.J. Wesseling, J.E. Wildberger, E.F.M. Wouters, L.J. Zimmerman (Maastricht University Medical Center+, Maastricht, the Netherlands) and T. Kuznetsova and T. Richart (University of Leuven, Leuven, Belgium), J. Denollet and F. Pouwer (University of Tilburg, Tilburg, the Netherlands) and G.J. Biessels (University of Utrecht, the Netherlands). Advisory Committee: M.J. Daemen (Amsterdam Medical Center, Amsterdam, the Netherlands), J.M. Dekker (VU University Medical Center, Amsterdam, the Netherlands), A. Hofman (Erasmus Medical Center, Rotterdam, the Netherlands), L.J. Launer (National Institutes of Health, National Institute on Aging, Bethesda, MD, USA), W. van Mechelen (VU University Medical Center, Amsterdam, the Netherlands, M. Stoll (Westfälische Wilhelms-Universität Münster, Münster, Deutschland), K. Stronks (Amsterdam Medical Center, Amsterdam, the Netherlands), J. Yudkin (Emeritus Professor of Medicine, University College London, Londen, UK).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda T. Schram.

Additional information

On behalf of the Maastricht Study Group.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schram, M.T., Sep, S.J.S., van der Kallen, C.J. et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol 29, 439–451 (2014). https://doi.org/10.1007/s10654-014-9889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-014-9889-0

Keywords

  • Cardiovascular disease
  • Chronic disease
  • Comorbidity
  • Pathophysiology
  • Prospective cohort study
  • Study design
  • Type 2 diabetes