Advertisement

European Journal of Epidemiology

, Volume 29, Issue 6, pp 439–451 | Cite as

The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities

  • Miranda T. Schram
  • Simone J. S. Sep
  • Carla J. van der Kallen
  • Pieter C. Dagnelie
  • Annemarie Koster
  • Nicolaas Schaper
  • Ronald M. A. Henry
  • Coen D. A. Stehouwer
NEW STUDY

Abstract

The Maastricht Study is an extensive phenotyping study that focuses on the etiology of type 2 diabetes (T2DM), its classic complications, and its emerging comorbidities. The study uses state-of-the-art imaging techniques and extensive biobanking to determine health status in a population-based cohort of 10,000 individuals that is enriched with T2DM individuals. Enrollment started in November 2010 and is anticipated to last 5–7 years. The Maastricht Study is expected to become one of the most extensive phenotyping studies in both the general population and T2DM participants world-wide. The Maastricht study will specifically focus on possible mechanisms that may explain why T2DM accelerates the development and progression of classic complications, such as cardiovascular disease, retinopathy, neuropathy and nephropathy and of emerging comorbidities, such as cognitive decline, depression, and gastrointestinal, musculoskeletal and respiratory diseases. In addition, it will also examine the association of these variables with quality of life and use of health care resources. This paper describes the rationale, overall study design, recruitment strategy and methods of basic measurements, and gives an overview of all measurements that are performed within The Maastricht Study.

Keywords

Cardiovascular disease Chronic disease Comorbidity Pathophysiology Prospective cohort study Study design Type 2 diabetes 

Abbreviations

AGEs

Advanced glycation end products

ATC-code

Anatomical therapeutic chemical classification system

DVA

Dynamic vessel analysis

ECG

Electrocardiogram

EMG

Electromyogram

HR-pQCT

High resolution peripheral quantitative computed tomography

IFG

Impaired fasting glucose

IGT

Impaired glucose tolerance

MVPA

Moderate-to-vigorous physical activity

NGT

Normal glucose tolerance

OCT

Optical coherence tomography

OGTT

Oral glucose tolerance test

T2DM

Type 2 diabetes mellitus

VFA

Vertebral fracture assessment

Notes

Acknowledgments

This study is supported by the European Regional Development Fund as part of OP-ZUID, the province of Limburg, the department of Economic Affairs of the Netherlands (grant 31O.041), Stichting the Weijerhorst, the Pearl String Initiative Diabetes, the Cardiovascular Center Maastricht, Cardiovascular Research Institute Maastricht (CARIM), School for Nutrition, Toxicology and Metabolism (NUTRIM), Stichting Annadal, Health Foundation Limburg and by unrestricted grants from Janssen, Novo Nordisk and Sanofi. The regional association of General Practitioners (Zorg in Ontwikkeling (ZIO)) is gratefully acknowledged for their contribution to The Maastricht Study, enabling the invitation of individuals with T2DM by using information from their web-based electronic health record. Members of The Maastricht Study Group in alphabetic order: L.J. Anteunis, I.C.W. Arts, P. van Assema, W.H. Backes, T. Berendschot, A. Boonen, H. Bosma, H.P. Brunner- La Rocca, H.J. Crijns, P.C. Dagnelie, J.W. Dallinga, F. de Vries, H. de Vries, N.K. de Vries, N.H.T.M. Dukers-Muijrers, P.J. Emans, S. Evers, P.P. Geusens, A.P. Gorgels, R.M.A. Henry, D. Hilkman, C.J.P.A. Hoebe, A.P. Hoeks, P.A. Hofman, A.J. Houben, J.F.A. Jansen, M.A. Joore, M.E. Kooi, A. Koster, D. Kotz, S.P.J. Kremers, A.A. Kroon, A.A. Masclee, W.H. Mess, I. Mesters, J.W. Muris, C. Neef, N. Reijven, R.S. Reneman, J.P. Reulen, M. Sastry, H.H. Savelberg, P. Savelkoul, C.G. Schalkwijk, N.C. Schaper, F.J. van Schooten, U. Schotten, J.S. Schouten, M.T. Schram, S.J.S. Sep, J.A. Staessen, C.D.A. Stehouwer, E.E. Stobberingh, M.P.J. van Boxtel, J.P. van den Bergh, C.P. van der Grinten, C.J. van der Kallen, S. van der Linden, M.C. van Dongen, T.A. van Geel, R.J. van Oostenbrugge, L. van Osch, F.H. Vanmolkot, F.R.J. Verhey, G.J. Wesseling, J.E. Wildberger, E.F.M. Wouters, L.J. Zimmerman (Maastricht University Medical Center+, Maastricht, the Netherlands) and T. Kuznetsova and T. Richart (University of Leuven, Leuven, Belgium), J. Denollet and F. Pouwer (University of Tilburg, Tilburg, the Netherlands) and G.J. Biessels (University of Utrecht, the Netherlands). Advisory Committee: M.J. Daemen (Amsterdam Medical Center, Amsterdam, the Netherlands), J.M. Dekker (VU University Medical Center, Amsterdam, the Netherlands), A. Hofman (Erasmus Medical Center, Rotterdam, the Netherlands), L.J. Launer (National Institutes of Health, National Institute on Aging, Bethesda, MD, USA), W. van Mechelen (VU University Medical Center, Amsterdam, the Netherlands, M. Stoll (Westfälische Wilhelms-Universität Münster, Münster, Deutschland), K. Stronks (Amsterdam Medical Center, Amsterdam, the Netherlands), J. Yudkin (Emeritus Professor of Medicine, University College London, Londen, UK).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10654_2014_9889_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)

References

  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedCrossRefGoogle Scholar
  2. 2.
    WHO. The global burden of disease: 2004 update. 2008. http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf.
  3. 3.
    Bloom DE, Cafiero ET, Jané-Llopis E, Abrahams-Gessel S, Bloom LR, Fathima S, Feigl AB, Gaziano T, Mowafi M, Pandya A, Prettner K, Rosenberg L, Seligman B, Stein AZ, Weinstein C. The global economic burden of noncommunicable diseases. Geneva: World Economic Forum; 2011.Google Scholar
  4. 4.
    Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003;290(14):1884–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia. 2004;47(10):1747–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.PubMedCrossRefGoogle Scholar
  7. 7.
    American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008;31(3):596–615. Google Scholar
  8. 8.
    Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169–81. doi: 10.1016/s0140-6736(11)60614-4.PubMedCrossRefGoogle Scholar
  9. 9.
    Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(Suppl 3):S16–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. doi: 10.1016/s0140-6736(10)60484-9.PubMedCrossRefGoogle Scholar
  12. 12.
    Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care. 2004;27(Suppl 1):S79–83.PubMedGoogle Scholar
  13. 13.
    Icks A, Haastert B, Trautner C, Giani G, Glaeske G, Hoffmann F. Incidence of lower-limb amputations in the diabetic compared to the non-diabetic population findings from nationwide insurance data, Germany, 2005–2007. Exp Clin Endocrinol Diabetes. 2009;117(9):500–4. doi: 10.1055/s-0029-1225333.PubMedCrossRefGoogle Scholar
  14. 14.
    Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51. doi: 10.1590/S0042-96862004001100009.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2011.Google Scholar
  16. 16.
    Wright JM, Musini VM. First-line drugs for hypertension. Cochrane Database of Syst Rev. 2009;3:CD001841. doi: 10.1002/14651858.CD001841.pub2.Google Scholar
  17. 17.
    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78. doi: 10.1016/S0140-6736(05)67394-1.PubMedCrossRefGoogle Scholar
  18. 18.
    Carnethon MR, Biggs ML, Barzilay J, Kuller LH, Mozaffarian D, Mukamal K, et al. Diabetes and coronary heart disease as risk factors for mortality in older adults. Am J Med. 2010;123(6):556e1-9. doi: 10.1016/j.amjmed.2009.11.023.CrossRefGoogle Scholar
  19. 19.
    Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29. doi: 10.1016/S0140-6736(12)61031-9.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lollgen H, Bockenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med. 2009;30(3):213–24. doi: 10.1055/s-0028-1128150.PubMedCrossRefGoogle Scholar
  21. 21.
    Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, et al. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS ONE. 2012;7(4):e34916. doi: 10.1371/journal.pone.0034916.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012. doi: 10.1007/s00125-012-2677-z.PubMedGoogle Scholar
  23. 23.
    Bankoski A, Harris TB, McClain JJ, Brychta RJ, Caserotti P, Chen KY, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Cooper AR, Sebire S, Montgomery AA, Peters TJ, Sharp DJ, Jackson N, et al. Sedentary time, breaks in sedentary time and metabolic variables in people with newly diagnosed type 2 diabetes. Diabetologia. 2012;55(3):589–99. doi: 10.1007/s00125-011-2408-x.PubMedCrossRefGoogle Scholar
  25. 25.
    Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369–71. doi: 10.2337/dc07-1795.PubMedCrossRefGoogle Scholar
  26. 26.
    Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, Van Domelen DR, et al. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS ONE. 2012;7(6):e37696. doi: 10.1371/journal.pone.0037696.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gallo V, Mackenbach JP, Ezzati M, Menvielle G, Kunst AE, Rohrmann S, et al. Social inequalities and mortality in Europe–results from a large multi-national cohort. PLoS ONE. 2012;7(7):e39013. doi: 10.1371/journal.pone.0039013.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Espelt A, Borrell C, Roskam AJ, Rodriguez-Sanz M, Stirbu I, Dalmau-Bueno A, et al. Socioeconomic inequalities in diabetes mellitus across Europe at the beginning of the 21st century. Diabetologia. 2008;51(11):1971–9. doi: 10.1007/s00125-008-1146-1.PubMedCrossRefGoogle Scholar
  29. 29.
  30. 30.
    van Keulen HM, Mesters I, Brug J, Ausems M, Campbell M, Resnicow K, et al. Vitalum study design: RCT evaluating the efficacy of tailored print communication and telephone motivational interviewing on multiple health behaviors. BMC Public Health. 2008;8:216. doi: 10.1186/1471-2458-8-216.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    van Keulen HM, Mesters I, Ausems M, van Breukelen G, Campbell M, Resnicow K, et al. Tailored print communication and telephone motivational interviewing are equally successful in improving multiple lifestyle behaviors in a randomized controlled trial. Ann Behav Med. 2011;41(1):104–18. doi: 10.1007/s12160-010-9231-3.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Resnicow K, McCarty F, Blissett D, Wang T, Heitzler C, Lee RE. Validity of a modified CHAMPS physical activity questionnaire among African-Americans. Med Sci Sports Exerc. 2003;35(9):1537–45. doi: 10.1249/01.MSS.0000084419.64044.2B.PubMedCrossRefGoogle Scholar
  33. 33.
    Harada ND, Chiu V, King AC, Stewart AL. An evaluation of three self-report physical activity instruments for older adults. Med Sci Sports Exerc. 2001;33(6):962–70.PubMedCrossRefGoogle Scholar
  34. 34.
    McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Ware JESK, Kosinski M, et al. SF-36 health survey manual and interpretation guide. Boston, MA: New England Medical Center; 1993.Google Scholar
  36. 36.
    Brooks R. EuroQol: the current state of play. Health Policy. 1996;37(1):53–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Suurmeijer TP, Doeglas DM, Moum T, Briancon S, Krol B, Sanderman R, et al. The Groningen Activity Restriction Scale for measuring disability: its utility in international comparisons. Am J Public Health. 1994;84(8):1270–3.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    WHO. Definition and Diagnosis of diabetes mellitus and intermediate hyperglycemia. 2006. www.whoint/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_newpdf.
  39. 39.
    Leng GC, Fowkes FG. The Edinburgh Claudication Questionnaire: an improved version of the WHO/Rose Questionnaire for use in epidemiological surveys. J Clin Epidemiol. 1992;45(10):1101–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36. doi: 10.1016/j.pain.2004.12.010.PubMedCrossRefGoogle Scholar
  41. 41.
    Snoek FJ, Pouwer F, Welch GW, Polonsky WH. Diabetes-related emotional distress in Dutch and U.S. diabetic patients: cross-cultural validity of the problem areas in diabetes scale. Diabetes Care. 2000;23(9):1305–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Van der Elst W, van Boxtel MP, van Breukelen GJ, Jolles J. Rey’s verbal learning test: normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. J Int Neuropsychol Soc. 2005;11(3):290–302.PubMedGoogle Scholar
  43. 43.
    Luteijn F, Barelds DPH. GIT-2, Groninger intelligentietest 2. Handleiding. Amsterdam: Harcourt Test Publishers; 2004.Google Scholar
  44. 44.
    Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment. 2006;13(1):62–79.PubMedCrossRefGoogle Scholar
  45. 45.
    Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. The concept shifting test: adult normative data. Psychol Assess. 2006;18(4):424–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J. Normative data for the Animal, Profession and Letter M Naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex. J Int Neuropsychol Soc. 2006;12(1):80–9.PubMedGoogle Scholar
  47. 47.
    van der Elst W, van Boxtel MP, van Breukelen GJ, Jolles J. The letter digit substitution test: normative data for 1,858 healthy participants aged 24–81 from the Maastricht Aging Study (MAAS): influence of age, education, and sex. J Clin Exp Neuropsychol. 2006;28(6):998–1009.PubMedCrossRefGoogle Scholar
  48. 48.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRefGoogle Scholar
  49. 49.
    Derix T, Hijdra A. Camdex-N protocol. Cambridge Examination for Mental Disorders of the Elderly. 1992.Google Scholar
  50. 50.
    Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33;quiz 4–57.PubMedGoogle Scholar
  51. 51.
    Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–13.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7. doi: 10.1001/archinte.166.10.1092.PubMedCrossRefGoogle Scholar
  53. 53.
    Launer LJ, Terwindt GM, Ferrari MD. The prevalence and characteristics of migraine in a population-based cohort: the GEM study. Neurology. 1999;53(3):537–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorders. 2nd ed. Cephalalgia. 2004;24(Suppl 1):9–160.Google Scholar
  55. 55.
    Stewart WF, Lipton RB, Dowson AJ, Sawyer J. Development and testing of the Migraine Disability Assessment (MIDAS) Questionnaire to assess headache-related disability. Neurology. 2001;56(6 Suppl 1):S20–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–38. doi: 10.1056/NEJMoa0909883.PubMedCrossRefGoogle Scholar
  57. 57.
    Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.PubMedGoogle Scholar
  58. 58.
    Rentz AM, Kahrilas P, Stanghellini V, Tack J, Talley NJ, de la Loge C, et al. Development and psychometric evaluation of the patient assessment of upper gastrointestinal symptom severity index (PAGI-SYM) in patients with upper gastrointestinal disorders. Qual Life Res. 2004;13(10):1737–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32(9):920–4. doi: 10.3109/00365529709011203.PubMedCrossRefGoogle Scholar
  60. 60.
    Molag ML, de Vries JH, Duif N, Ocke MC, Dagnelie PC, Goldbohm RA, et al. Selecting informative food items for compiling food-frequency questionnaires: comparison of procedures. Br J Nutr. 2010;104(3):446–56. doi: 10.1017/S0007114510000401.PubMedCrossRefGoogle Scholar
  61. 61.
    Kersten P, Cardol M, George S, Ward C, Sibley A, White B. Validity of the impact on participation and autonomy questionnaire: a comparison between two countries. Disabil Rehabil. 2007;29(19):1502–9. doi: 10.1080/09638280601030066.PubMedCrossRefGoogle Scholar
  62. 62.
    McCallister L, Fischer CS. A procedure for surveying personal networks. Sociol Methods Res. 1978;7(2):131–48.CrossRefGoogle Scholar
  63. 63.
    Goldberg LR. An alternative “description of personality”: the big-five factor structure. J Pers Soc Psychol. 1990;59(6):1216–29.PubMedCrossRefGoogle Scholar
  64. 64.
    Denollet J. DS14: standard assessment of negative affectivity, social inhibition, and Type D personality. Psychosom Med. 2005;67(1):89–97. doi: 10.1097/01.psy.0000149256.81953.49.PubMedCrossRefGoogle Scholar
  65. 65.
    Lamberts PHG, Steenbakkers M, Thijssen NHB, Backus-Mujakovic S, de Vreede JJM, Hajema KJ, Poos MJJC. Een gezonde kijk op Zuid-Limburg. Regionale Volksgezondheid Toekomst Verkenning 2010. GGD Zuid-Limburg; 2010.Google Scholar
  66. 66.
    Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol. 1991;7(4):403–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56(3):872–8. doi: 10.2337/db06-0922.PubMedCrossRefGoogle Scholar
  68. 68.
    Mooy JM, Grootenhuis PA, de Vries H, Valkenburg HA, Bouter LM, Kostense PJ, et al. Prevalence and determinants of glucose intolerance in a Dutch Caucasian population. The Hoorn Study. Diabetes Care. 1995;18(9):1270–3.PubMedCrossRefGoogle Scholar
  69. 69.
    Schram MT, Kostense PJ, Van Dijk RA, Dekker JM, Nijpels G, Bouter LM, et al. Diabetes, pulse pressure and cardiovascular mortality: the Hoorn Study. J Hypertens. 2002;20(9):1743–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Miranda T. Schram
    • 1
    • 4
  • Simone J. S. Sep
    • 1
    • 4
  • Carla J. van der Kallen
    • 1
    • 4
  • Pieter C. Dagnelie
    • 2
    • 4
    • 5
  • Annemarie Koster
    • 3
    • 5
  • Nicolaas Schaper
    • 1
    • 4
    • 5
  • Ronald M. A. Henry
    • 1
    • 4
  • Coen D. A. Stehouwer
    • 1
    • 4
    • 5
  1. 1.Department of MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
  2. 2.Department of EpidemiologyMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Department of Social MedicineMaastricht UniversityMaastrichtThe Netherlands
  4. 4.Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
  5. 5.School for Public Health and Primary Care (CAPHRI)Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations