Use of glucosamine and chondroitin in relation to mortality

Abstract

Glucosamine and chondroitin are products commonly used by older adults in the US and Europe. There is limited evidence that they have anti-inflammatory properties, which could provide risk reduction of several diseases. However, data on their long-term health effects is lacking. To evaluate whether use of glucosamine and chondroitin are associated with cause-specific and total mortality. Participants (n = 77,510) were members of a cohort study of Washington State (US) residents aged 50–76 years who entered the cohort in 2000–2002 by completing a baseline questionnaire that included questions on glucosamine and chondroitin use. Participants were followed for mortality through 2008 (n = 5,362 deaths). Hazard ratios (HR) for death adjusted for multiple covariates were estimated using Cox models. Current (baseline) glucosamine and chondroitin use were associated with a decreased risk of total mortality compared to never use. The adjusted HR associated with current use of glucosamine (with or without chondroitin) was 0.82 (95 % CI 0.75–0.90) and 0.86 (95 % CI 0.78–0.96) for chondroitin (included in two-thirds of glucosamine supplements). Current use of glucosamine was associated with a significant decreased risk of death from cancer (HR 0.87 95 % CI 0.76–0.98) and with a large risk reduction for death from respiratory diseases (HR 0.59 95 % CI 0.41–0.83). Use of glucosamine with or without chondroitin was associated with reduced total mortality and with reductions of several broad causes of death. Although bias cannot be ruled out, these results suggest that glucosamine may provide some mortality benefit.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA, J Am Med Assoc. 2008;300(24):2867–78.

    Article  CAS  Google Scholar 

  2. 2.

    Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006;354(8):795–808.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Jordan KM, Arden NK, Doherty M, et al. EULAR recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a task force of the standing committee for international clinical studies including therapeutic trials (ESCISIT). Ann Rheum Dis. 2003;62(12):1145–55.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Wandel S, Juni P, Tendal B, et al. Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis. BMJ. 2010;341:c4675.

    PubMed  Article  Google Scholar 

  5. 5.

    Wilkens P, Scheel IB, Grundnes O, Hellum C, Storheim K. Effect of glucosamine on pain-related disability in patients with chronic low back pain and degenerative lumbar osteoarthritis: a randomized controlled trial. JAMA. 2010;304(1):45–52.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Herrero-Beaumont G, Ivorra JAR, Trabado MDC, et al. Glucosamine sulfate in the treatment of knee osteoarthritis symptoms—a randomized, double-blind, placebo-controlled study using acetaminophen as a side comparator. Arthr Rheum. 2007;56(2):555–67.

    Article  CAS  Google Scholar 

  7. 7.

    Iovu M, Dumais G, du Souich P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthr Cartil. 2008;16(Suppl 3):S14–8.

    PubMed  Article  Google Scholar 

  8. 8.

    Largo R, Alvarez-Soria MA, Diez-Ortego I, et al. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthr Cartil. 2003;11(4):290–8.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Chan PS, Caron JP, Rosa GJ, Orth MW. Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E(2) in articular cartilage explants. Osteoarthr Cartil. 2005;13(5):387–94.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Kantor ED LJ, Vaughan TL, Peters U, Rehm CD, White E. Association of specialty supplement use with C-reactive protein. Am J Epidemiol 2012. (in press.).

  11. 11.

    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004;109(21 Suppl 1):II2–10.

    Google Scholar 

  14. 14.

    Lindsberg PJ, Grau AJ. Inflammation and infections as risk factors for ischemic stroke. Stroke. 2003;34(10):2518–32.

    PubMed  Article  Google Scholar 

  15. 15.

    Pocobelli G, Kristal AR, Patterson RE, et al. Total mortality risk in relation to use of less-common dietary supplements. Am J Clin Nutr. 2010;91(6):1791–800.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Bartolucci AA, Howard G. Meta-analysis of data from the six primary prevention trials of cardiovascular events using aspirin. Am J Cardiol. 2006;98(6):746–50.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    White E, Patterson RE, Kristal AR, et al. VITamins And Lifestyle cohort study: study design and characteristics of supplement users. Am J Epidemiol. 2004;159(1):83–93.

    PubMed  Article  Google Scholar 

  19. 19.

    Onoue S, Misaka S, Kawabata Y, Yamada S. New treatments for chronic obstructive pulmonary disease and viable formulation/device options for inhalation therapy. Expert Opin Drug Deliv. 2009;6(8):793–811.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Littman AJ, White E, Kristal AR, Patterson RE, Satia-Abouta J, Potter JD. Assessment of a one-page questionnaire on long-term recreational physical activity. Epidemiology. 2004;15(1):105–13.

    PubMed  Article  Google Scholar 

  21. 21.

    Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the women’s health initiative food frequency questionnaire. Ann Epidemiol. 1999;9(3):178–87.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans. Washington, DC: US GPO; 2005.

  23. 23.

    Organization WH. International statistical classification of diseases and related health problems, 10th revision. Version for 2007. Geneva: World Health Organization.

    Google Scholar 

  24. 24.

    Brasky TM, Lampe JW, Slatore CG, White E. Use of glucosamine and chondroitin and lung cancer risk in the VITamins and lifestyle (VITAL) cohort. Cancer Causes Control. 2011;22(9):1333–42.

    PubMed  Article  Google Scholar 

  25. 25.

    Satia JA, Littman A, Slatore CG, Galanko JA, White E. Associations of herbal and specialty supplements with lung and colorectal cancer risk in the VITamins and lifestyle study. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1419–28.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Brasky TM, Lampe JW, Potter JD, Patterson RE, White E. Specialty supplements and breast cancer risk in the VITamins and lifestyle (VITAL) cohort. Cancer Epidemiol Biomarkers Prev. 2010;19(7):1696–708.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Walter RB, Brasky TM, Milano F, White E. Vitamin, mineral, and specialty supplements and risk of hematologic malignancies in the prospective VITamins and lifestyle (VITAL) study. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2298–308.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Duan W, Paka L, Pillarisetti S. Distinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: evidence for a protective role for glucosamine in atherosclerosis. Cardiovasc Diabetol. 2005;4:16.

    PubMed  Article  Google Scholar 

  29. 29.

    Herrero-Beaumont G, Marcos ME, Sanchez-Pernaute O, et al. Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis. Br J Pharmacol. 2008;154(4):843–51.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Liu J, Marchase RB, Chatham JC. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am J Physiol Heart Circ Physiol. 2007;293(3):H1391–9.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Xing D, Feng W, Not LG, et al. Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. Am J Physiol Heart Circ Physiol. 2008;295(1):H335–42.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Zou L, Yang S, Champattanachai V, et al. Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol. 2009;296(2):H515–23.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Lin PC, Jones SO, McGlasson DL. Effects of glucosamine and Celadrin on platelet function. Clin Lab Sci. 2010;23(1):32–6.

    PubMed  Google Scholar 

  34. 34.

    Bardia A, Ebbert JO, Vierkant RA, et al. Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. J Natl Cancer Inst. 2007;99(11):881–9.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ratnasinghe LD, Graubard BI, Kahle L, Tangrea JA, Taylor PR, Hawk E. Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Res. 2004;24(5B):3177–84.

    Google Scholar 

  36. 36.

    Molfino NA, Jeffery PK. Chronic obstructive pulmonary disease: histopathology, inflammation and potential therapies. Pulm Pharmacol Ther. 2007;20(5):462–72.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Martinez FJ, Donohue JF, Rennard SI. The future of chronic obstructive pulmonary disease treatment—difficulties of and barriers to drug development. Lancet. 2011;378(9795):1027–37.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Xu CX, Jin H, Chung YS, et al. Chondroitin sulfate extracted from the Styela clava tunic suppresses TNF-alpha-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-kappaB signal in JB6 cells. Cancer Lett. 2008;264(1):93–100.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Li Q, Withoff S, Verma IM. Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol. 2005;26(6):318–25.

    PubMed  Article  Google Scholar 

  40. 40.

    Chou MM, Vergnolle N, McDougall JJ, et al. Effects of chondroitin and glucosamine sulfate in a dietary bar formulation on inflammation, interleukin-1beta, matrix metalloprotease-9, and cartilage damage in arthritis. Exp Biol Med (Maywood). 2005;230(4):255–62.

    CAS  Google Scholar 

  41. 41.

    Sakai S, Sugawara T, Kishi T, Yanagimoto K, Hirata T. Effect of glucosamine and related compounds on the degranulation of mast cells and ear swelling induced by dinitrofluorobenzene in mice. Life Sci. 2010;86(9–10):337–43.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Xu CX, Jin H, Chung YS, et al. Chondroitin sulfate extracted from ascidian tunic inhibits phorbol ester-induced expression of Inflammatory factors VCAM-1 and COX-2 by blocking NF-kappaB activation in mouse skin. J Agric Food Chem. 2008;56(20):9667–75.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Chan PS, Caron JP, Orth MW. Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate. J Rheumatol. 2006;33(7):1329–40.

    PubMed  CAS  Google Scholar 

  44. 44.

    Nakamura H, Nishioka K. Effects of glucosamine/chondroitin supplement on osteoarthritis: involvement of PGE2 and YKL-40. Jpn J Rheum Joint Surg. 2002;21(2):175–84.

    Google Scholar 

  45. 45.

    Nakamura H, Masuko K, Yudoh K, Kato T, Kamada T, Kawahara T. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol Int. 2007;27(3):213–8.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med. 1999;340(24):1888–99.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Solomon SD, Wittes J, Finn PV, et al. Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis. Circulation. 2008;117(16):2104–13.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R01-CA142545, R25-CA94880, and K05-CA154337 from the National Cancer Institute (US).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Griffith A. Bell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bell, G.A., Kantor, E.D., Lampe, J.W. et al. Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol 27, 593–603 (2012). https://doi.org/10.1007/s10654-012-9714-6

Download citation

Keywords

  • Glucosamine
  • Chondroitin
  • Supplements
  • Mortality
  • Cohort
  • Cancer