Skip to main content
Log in

A genetic instrument for Mendelian randomization of fibrinogen

  • Genetic Epidemiology
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Mendelian randomization studies on fibrinogen commonly use a single genetic variant as an instrument, but this may explain only a small proportion of the total phenotypic variance. We examined the contribution of multiple common single nucleotide polymorphisms (SNPs) and haplotypes in the entire fibrinogen gene cluster to plasma fibrinogen levels in two prospective cohorts, for use as instruments in future Mendelian randomization studies. Genotypes for 20 SNPs were determined in 2,778 middle-age (49–64 years) men from the Second-Northwick-Park-Heart Study (NPHS-II). These were replicated in 3,705 men from the Whitehall-II study (WH-II). Plasma fibrinogen levels were determined six times in NPHS-II and three times in WH-II. The minor alleles of four SNPs from the FGB gene, two from the FGA gene, and one from the FGG gene were associated with higher plasma fibrinogen levels. SNP rs1800790 (−455G > A) commonly used in Mendelian randomization studies was associated with R2 = 1.22% of the covariate adjusted residual variance in fibrinogen level. A variable selection procedure identified one additional SNP: rs2070011 (FGA) altogether explaining R2 = 1.45% of the residual variance in fibrinogen level. Using these SNPs no evidence for causality between the fibrinogen levels and coronary heart diseases was found in instrumental variables analysis. In the replication cohort, WH-II, the effects of the two SNPs on fibrinogen levels were consistent with the NPHS-II results. There is statistical evidence for several functional sites in the fibrinogen gene cluster that determine an individual’s plasma fibrinogen levels. Thus, a combination of several SNPs will provide a stronger instrument for fibrinogen Mendelian randomization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Danesh J, Lewington S, Thompson SG, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809.

    Article  PubMed  CAS  Google Scholar 

  2. Kant JA, Fornace AJ Jr, Saxe D, Simon MI, McBride OW, Crabtree GR. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci USA. 1985;82(8):2344–8.

    Article  PubMed  CAS  Google Scholar 

  3. Friedlander Y, Elkana Y, Sinnreich R, Kark JD. Genetic and environmental sources of fibrinogen variability in Israeli families: the Kibbutzim Family Study. Am J Hum Genet. 1995;56(5):1194–206.

    PubMed  CAS  Google Scholar 

  4. Humphries SE, Cook M, Dubowitz M, Stirling Y, Meade TW. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet. 1987;1(8548):1452–5.

    Article  PubMed  CAS  Google Scholar 

  5. de Maat MP, Kastelein JJ, Jukema JW, et al. 455G/A polymorphism of the beta-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. REGRESS group. Arterioscler Thromb Vasc Biol. 1998;18(2):265–71.

    Article  PubMed  Google Scholar 

  6. Simmonds RE, Hermida J, Rezende SM, Lane DA. Haemostatic genetic risk factors in arterial thrombosis. Thromb Haemost. 2001;86(1):374–85.

    PubMed  CAS  Google Scholar 

  7. Voetsch B, Loscalzo J. Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol. 2004;24(2):216–29.

    Article  PubMed  CAS  Google Scholar 

  8. Keavney B, Danesh J, Parish S, et al. Fibrinogen and coronary heart disease: test of causality by ‘Mendelian randomization’. Int J Epidemiol. 2006;35(4):935–43.

    Article  PubMed  Google Scholar 

  9. Davey Smith G, Harbord R, Ebrahim S. Fibrinogen, C-reactive protein and coronary heart disease: does Mendelian randomization suggest the associations are non-causal? QJM. 2004;97(3):163–6.

    Article  PubMed  CAS  Google Scholar 

  10. Bound J, Jaeger D, Baker R. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J Am Stat Assoc. 1995;90(430):443–50.

    Google Scholar 

  11. Staiger D, Stock J. Instrumental variables regression with weak instruments. Econometrica. 1997;65(3):557–86.

    Article  Google Scholar 

  12. Meade TW, Humphries SE, De Stavola BL. Commentary: fibrinogen and coronary heart disease–test of causality by ‘Mendelian’ randomization by Keavney et al. Int J Epidemiol. 2006;35(4):944–7.

    Article  PubMed  Google Scholar 

  13. Mannila MN, Eriksson P, Lundman P, et al. Contribution of haplotypes across the fibrinogen gene cluster to variation in risk of myocardial infarction. Thromb Haemost. 2005;93(3):570–7.

    PubMed  CAS  Google Scholar 

  14. Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels. Blood. 2005;106(13):4176–83.

    Article  PubMed  CAS  Google Scholar 

  15. Cooper JA, Miller GJ, Bauer KA, et al. Comparison of novel hemostatic factors and conventional risk factors for prediction of coronary heart disease. Circulation. 2000;102(23):2816–22.

    PubMed  CAS  Google Scholar 

  16. Miller GJ, Bauer KA, Barzegar S, et al. The effects of quality and timing of venepuncture on markers of blood coagulation in healthy middle-aged men. Thromb Haemost. 1995;73(1):82–6.

    PubMed  CAS  Google Scholar 

  17. Miller GJ, Bauer KA, Barzegar S, Cooper JA, Rosenberg RD. Increased activation of the haemostatic system in men at high risk of fatal coronary heart disease. Thromb Haemost. 1996;75(5):767–71.

    PubMed  CAS  Google Scholar 

  18. Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957;17(4):237–46.

    Article  PubMed  CAS  Google Scholar 

  19. World Health Organization. Regional Office for Europe. Myocardial infarction community registers: results of a WHO international collaborative study coordinated by the Regional Office for Europe. Copenhagen: Regional Office for Europe, World Health Organization; 1976.

  20. Prineas RJ, Crow RS, Blackburn H. The Minnesota code manual of electrocardiographic findings: standards and procedures for measurement and classification. Boston, MA; Bristol: JohnWright; 1982.

  21. Drenos F, Talmud PJ, Casas JP, et al. Integrated associations of genotypes with multiple blood biomarkers linked to coronary heart disease risk. Hum Mol Genet. 2009;18(12):2305–16.

    Article  PubMed  CAS  Google Scholar 

  22. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet. 2005;37(11):1217–23.

    Article  PubMed  Google Scholar 

  23. Thomas A, Lamlum H, Humphries S, Green F. Linkage disequilibrium across the fibrinogen locus as shown by five genetic polymorphisms, G/A-455 (HaeIII), C/T-148 (HindIII/AluI), T/G + 1689 (AvaII), and BclI (beta-fibrinogen) and TaqI (alpha-fibrinogen), and their detection by PCR. Hum Mutat. 1994;3(1):79–81.

    Article  PubMed  CAS  Google Scholar 

  24. Baumann RE, Henschen AH. Linkage disequilibrium relationships among four polymorphisms within the human fibrinogen gene cluster. Hum Genet. 1994;94(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  25. Marmot M, Brunner E. Cohort profile: the whitehall II study. Int J Epidemiol. 2005;34(2):251–6.

    Article  PubMed  Google Scholar 

  26. Talmud PJ, Drenos F, Shah S, et al. Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip. Am J Hum Genet. 2009;85(5):628–42.

    Article  PubMed  CAS  Google Scholar 

  27. Steptoe A, Kunz-Ebrecht SR, Owen N. Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med. 2003;33(4):667–74.

    Article  PubMed  CAS  Google Scholar 

  28. Keating BJ, Tischfield S, Murray SS, et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS ONE. 2008;3(10):e3583.

    Article  PubMed  Google Scholar 

  29. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–89.

    Article  PubMed  CAS  Google Scholar 

  30. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet. 2005;76(3):449–62.

    Article  PubMed  CAS  Google Scholar 

  31. Graham RR, Langefeld CD, Gaffney PM, et al. Genetic linkage and transmission disequilibrium of marker haplotypes at chromosome 1q41 in human systemic lupus erythematosus. Arthritis Res. 2001;3(5):299–305.

    Article  PubMed  CAS  Google Scholar 

  32. Marchini J, Cutler D, Patterson N, et al. A comparison of phasing algorithms for trios and unrelated individuals. Am J Hum Genet. 2006;78(3):437–50.

    Article  PubMed  CAS  Google Scholar 

  33. Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003;73(5):1162–9.

    Article  PubMed  CAS  Google Scholar 

  34. Wood AM, White IR, Thompson SG, et al. Correcting for multivariate measurement error by regression calibration in meta-analyses of epidemiological studies. Stat Med. 2009;28(7):1067–92.

    Article  Google Scholar 

  35. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–74.

    Article  PubMed  CAS  Google Scholar 

  36. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.

    Article  PubMed  CAS  Google Scholar 

  37. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  PubMed  Google Scholar 

  38. Clarke P, Windmeijer F. Instrumental variable estimators for binary outcomes: working paper No. 09/209. Bristol: The Centre for Market & Public Organisations; 2009.

  39. Lawlor DA, Harbord RM, Tybjaerg-Hansen A et al. Using genetic loci to understand the relationship between adiposity and psychological distress: a Mendelian Randomization study in the Copenhagen General Population Study of 53,221 adults. J Intern Med. 2011;269:525–37.

    Google Scholar 

  40. Smith AJ, Palmen J, Putt W, Talmud PJ, Humphries SE, Drenos F. Application of statistical and functional methodologies for the investigation of genetic determinants of coronary heart disease biomarkers: lipoprotein lipase genotype and plasma triglycerides as an exemplar. Hum Mol Genet. 2010;19(20):3936–47.

    Google Scholar 

  41. Martens EP, Pestman WR, de Boer A, Belitser SV, Klungel OH. Instrumental variables: application and limitations. Epidemiology. 2006;17(3):260–7.

    Article  PubMed  Google Scholar 

  42. Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet. 2001;2(2):91–9.

    Article  PubMed  CAS  Google Scholar 

  43. Colhoun HM, McKeigue PM, Davey Smith G, et al. Problems of reporting genetic associations with complex outcomes. Lancet. 2003;361(9360):865–72.

    Article  PubMed  Google Scholar 

  44. Clayton D, McKeigue PM. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet. 2001;358(9290):1356–60.

    Article  PubMed  CAS  Google Scholar 

  45. Zeggini E, Rayner W, Morris AP, et al. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet. 2005;37(12):1320–2.

    Article  PubMed  CAS  Google Scholar 

  46. Cambon-Thomsen A. Assessing the impact of biobanks. Nat Genet. 2003;34(1):25–6.

    Article  PubMed  Google Scholar 

  47. Baumann RE, Henschen AH. Human fibrinogen polymorphic site analysis by restriction endonuclease digestion and allele-specific polymerase chain reaction amplification: identification of polymorphisms at positions A alpha 312 and B beta 448. Blood. 1993;82(7):2117–24.

    PubMed  CAS  Google Scholar 

  48. Reiner AP, Carty CL, Carlson CS, et al. Association between patterns of nucleotide variation across the three fibrinogen genes and plasma fibrinogen levels: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Thromb Haemost. 2006;4(6):1279–87.

    Article  PubMed  CAS  Google Scholar 

  49. Koch W, Hoppmann P, Biele J, Mueller JC, Schomig A, Kastrati A. Fibrinogen genes and myocardial infarction: a haplotype analysis. Arterioscler Thromb Vasc Biol. 2008;28(4):758–63.

    Article  PubMed  CAS  Google Scholar 

  50. Carty CL, Cushman M, Jones D, et al. Associations between common fibrinogen gene polymorphisms and cardiovascular disease in older adults. The Cardiovascular Health Study. Thromb Haemost. 2008;99(2):388–95.

    PubMed  CAS  Google Scholar 

  51. Friedlander Y, Kark JD, Sinnreich R, Basso F, Humphries SE. Combined segregation and linkage analysis of fibrinogen variability in Israeli families: evidence for two quantitative-trait loci, one of which is linked to a functional variant (-58G > A) in the promoter of the alpha-fibrinogen gene. Ann Hum Genet. 2003;67(Pt 3):228–41.

    Article  PubMed  CAS  Google Scholar 

  52. van’t Hooft FM, von Bahr SJ, Silveira A, Iliadou A, Eriksson P, Hamsten A. Two common, functional polymorphisms in the promoter region of the beta-fibrinogen gene contribute to regulation of plasma fibrinogen concentration. Arterioscler Thromb Vasc Biol. 1999;19(12):3063–70.

    Article  Google Scholar 

  53. Behague I, Poirier O, Nicaud V, et al. Beta fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM Study. Etude Cas-Temoins sur l’Infarctus du Myocarde. Circulation. 1996;93(3):440–9.

    PubMed  CAS  Google Scholar 

  54. Mannila MN, Eriksson P, Ericsson CG, Hamsten A, Silveira A. Epistatic and pleiotropic effects of polymorphisms in the fibrinogen and coagulation factor XIII genes on plasma fibrinogen concentration, fibrin gel structure and risk of myocardial infarction. Thromb Haemost. 2006;95(3):420–7.

    PubMed  CAS  Google Scholar 

  55. Mannila MN, Eriksson P, Leander K, et al. The association between fibrinogen haplotypes and myocardial infarction in men is partly mediated through pleiotropic effects on the serum IL-6 concentration. J Intern Med. 2007;261(2):138–47.

    Article  PubMed  CAS  Google Scholar 

  56. Kardys I, Uitterlinden AG, Hofman A, Witteman JC, de Maat MP. Fibrinogen gene haplotypes in relation to risk of coronary events and coronary and extracoronary atherosclerosis: the Rotterdam Study. Thromb Haemost. 2007;97(2):288–95.

    PubMed  CAS  Google Scholar 

  57. Theodoraki EV, Nikopensius T, Suhorutsenko J, et al. Fibrinogen beta variants confer protection against coronary artery disease in a Greek case-control study. BMC Med Genet. 2010;11:28.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the contribution of the late Professor George Miller (1939–2006) who was the PI on the NPHS-II study. The British Heart Foundation support FD and SEH (PG2005/014). The NPHS-II study was supported by the Medical Research Council, the US National Institutes of Health (NHLBI 33014) and Du Pont Pharma. We also thank all the medical staff and patients who contributed to the NPHS-II study and the Office for National Statistics (NHS) Central Registry for provision of mortality data. This work on WHII was supported by the British Heart Foundation (BHF) PG/07/133/24260, RG/08/008, Dr Kumari’s and Prof. Kivimaki’s time on this manuscript was partially supported by the National Heart Lung and Blood Institute (NHLBI: HL36310. The WHII study has been supported by grants from the Medical Research Council; British Heart Foundation; Health and Safety Executive; Department of Health; National Heart, Lung, and Blood Institute (HL036310) and National Institute on Aging (AG13196), US, NIH; Agency for Health Care Policy Research (HS06516); and the John D and Catherine T MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve E. Humphries.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ken-Dror, G., Humphries, S.E., Kumari, M. et al. A genetic instrument for Mendelian randomization of fibrinogen. Eur J Epidemiol 27, 267–279 (2012). https://doi.org/10.1007/s10654-012-9666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-012-9666-x

Keywords

Navigation