Skip to main content

Advertisement

Log in

Parkinson’s disease risk from ambient exposure to pesticides

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Due to the heavy and expanding agricultural use of neurotoxic pesticides suspected to affect dopaminergic neurons, it is imperative to closely examine the role of pesticides in the development of Parkinson’s disease (PD). We focus our investigation on pesticide use in California’s heavily agricultural central valley by utilizing a unique pesticide use reporting system. From 2001 to 2007, we enrolled 362 incident PD cases and 341 controls living in the Central Valley of California. Employing our geographic information system model, we estimated ambient exposures to the pesticides ziram, maneb, and paraquat at work places and residences from 1974 to 1999. At workplaces, combined exposure to ziram, maneb, and paraquat increased risk of PD three-fold (OR: 3.09; 95% CI: 1.69, 5.64) and combined exposure to ziram and paraquat, excluding maneb exposure, was associated with a 80% increase in risk (OR:1.82; 95% CI: 1.03, 3.21). Risk estimates for ambient workplace exposure were greater than for exposures at residences and were especially high for younger onset PD patients and when exposed in both locations. Our study is the first to implicate ziram in PD etiology. Combined ambient exposure to ziram and paraquat as well as combined ambient exposure to maneb and paraquat at both workplaces and residences increased PD risk substantially. Those exposed to ziram, maneb, and paraquat together experienced the greatest increase in PD risk. Our results suggest that pesticides affecting different mechanisms that contribute to dopaminergic neuron death may act together to increase the risk of PD considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA DPR:

California department of pesticide regulation

CI:

Confidence interval

GIS:

Geographic information system

HIPAA:

Health insurance portability and accountability act

OR:

Odds ratio

PD:

Parkinson’s disease

PLSS:

Public land survey system

PUR:

Pesticide use report

UCLA:

University of California Los Angeles

UPS:

Ubiquitin proteasome system

References

  1. Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord. 2003;18(1):19–31.

    Article  PubMed  Google Scholar 

  2. Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res. 2003;976(2):243–52.

    Article  PubMed  CAS  Google Scholar 

  3. Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis. 2007;25(2):392–400.

    Article  PubMed  CAS  Google Scholar 

  4. McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis. 2002;10(2):119–27.

    Article  PubMed  CAS  Google Scholar 

  5. Ossowska K, Smialowska M, Kuter K, et al. Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson’s disease. Neuroscience. 2006;141(4):2155–65.

    Article  PubMed  CAS  Google Scholar 

  6. Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease. Neuroscience. 2004;128(2):281–91.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang J, Fitsanakis VA, Gu G, et al. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem. 2003;84(2):336–46.

    Article  PubMed  CAS  Google Scholar 

  8. Chou AP, Maidment N, Klintenberg R, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J Biol Chem. 2008;283(50):34696–703.

    Article  PubMed  CAS  Google Scholar 

  9. Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK. Developmental pesticide models of the Parkinson disease phenotype. Environ Health Perspect. 2005;113(9):1263–70.

    Article  PubMed  CAS  Google Scholar 

  10. Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK. Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates. J Neurochem. 2003;85(4):1075–86.

    Article  PubMed  CAS  Google Scholar 

  11. Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O. Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem. 2005;280(23):22530–9.

    Article  PubMed  CAS  Google Scholar 

  12. WHO. Public health impact of pesticide used in agriculture. Geneva: World Health Organization; 1990.

    Google Scholar 

  13. Ecobichon DJ. Pesticide use in developing countries. Toxicology. 2001;1–3(160):27–33.

    Article  Google Scholar 

  14. Ward MH, Lubin J, Giglierano J, et al. Proximity to crops and residential exposure to agricultural herbicides in iowa. Environ Health Perspect. 2006;114(6):893–7.

    Article  PubMed  CAS  Google Scholar 

  15. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res. 2001;86(2):122–7.

    Article  PubMed  CAS  Google Scholar 

  16. Petrovitch H, Ross GW, Abbott RD, et al. Plantation work and risk of Parkinson disease in a population-based longitudinal study. Arch Neurol. 2002;59(11):1787–92.

    Article  PubMed  Google Scholar 

  17. Ascherio A, Chen H, Weisskopf MG, et al. Pesticide exposure and risk for Parkinson’s disease. Ann Neurol. 2006;60(2):197–203.

    Article  PubMed  CAS  Google Scholar 

  18. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169(8):919–26.

    Article  PubMed  Google Scholar 

  19. Kamel F, Tanner C, Umbach D, et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol. 2007;165(4):364–74.

    Article  PubMed  CAS  Google Scholar 

  20. Elbaz A, Clavel J, Rathouz PJ, Moisan F, Galanaud JP, Delemotte B, Alperovitch A, Tzourio C. Professional exposure to pesticides and Parkinson’s disease. Ann Neurol. 2009;66(4)494–504.

    Google Scholar 

  21. Liou HH, Tsai MC, Chen CJ, et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology. 1997;48(6):1583–8.

    PubMed  CAS  Google Scholar 

  22. Dhillon AS, Tarbutton GL, Levin JL, et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromed. 2008;13(1):37–48.

    Article  Google Scholar 

  23. Seidler A, Hellenbrand W, Robra BP, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology. 1996;46(5):1275–84.

    PubMed  CAS  Google Scholar 

  24. Hancock DB, Martin ER, Mayhew GM, et al. Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol. 2008;8:6.

    Article  PubMed  Google Scholar 

  25. Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14(2):317–35.

    Article  PubMed  CAS  Google Scholar 

  26. Goldberg DW, Zhang, X, Marusek JC, Wilson JP, Ritz B, Cockburn MG. Development of an automated pesticide exposure analyst for California’s central valley. Proceedings of the urban and regional information systems association GIS in public health conference. 2007;136–56 http://www.dwgold.com/conferences/Proceedings/urisaHealth2007.pdf.

  27. Kang GA, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B. Clinical characteristics in early Parkinson’s disease in a central California population-based study. Mov Disord. 2005;20(9):1133–42.

    Article  PubMed  Google Scholar 

  28. Rull RP, Ritz B. Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect. 2003;111(12):1582–9.

    Article  PubMed  Google Scholar 

  29. Chester G, Ward RJ. Occupational exposure and drift hazard during aerial application of paraquat to cotton. Arch Environ Contam Toxicol. 1984;13(5):551–63.

    Article  PubMed  CAS  Google Scholar 

  30. McElroy JA, Remington PL, Trentham-Dietz A, Robert SA, Newcomb PA. Geocoding addresses from a large population-based study: lessons learned. Epidemiology. 2003;14(4):399–407.

    PubMed  Google Scholar 

  31. MacCollom GB. Drift comparisons between aerial and ground orchard application. J Econ Entomol. 1986;79:459–64.

    Google Scholar 

  32. Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide exposure and Parkinson’s disease. Ann N Y Acad Sci. 2006;1076:378–87.

    Article  PubMed  CAS  Google Scholar 

  33. CDWR. Land use survey (2010). Available from: http://www.water.ca.gov/landwateruse/lusrvymain.cfm. Cited 5 May 2010.

  34. Chan JY, Chan SH, Dai KY, Cheng HL, Chou JL, Chang AY. Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos. Neuropharmacology. 2006;51(7–8):1109–19.

    Article  PubMed  CAS  Google Scholar 

  35. Hatcher JM, Richardson JR, Guillot TS, et al. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol. 2007;204(2):619–30.

    Article  PubMed  CAS  Google Scholar 

  36. Baldi I, Cantagrel A, Lebailly P, et al. Association between Parkinson’s disease and exposure to pesticides in southwestern France. Neuroepidemiology. 2003;22(5):305–10.

    Article  PubMed  Google Scholar 

  37. Dick FD, De Palma G, Ahmadi A, et al. Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med. 2007;64(10):666–72.

    Article  PubMed  CAS  Google Scholar 

  38. Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol. 2005;62(1):91–5.

    Article  PubMed  Google Scholar 

  39. Frigerio R, Sanft KR, Grossardt BR, et al. Chemical exposures and Parkinson’s disease: a population-based case-control study. Mov Disord. 2006;21(10):1688–92.

    Article  PubMed  Google Scholar 

  40. Nuti A, Ceravolo R, Dell’Agnello G, et al. Environmental factors and Parkinson’s disease: a case-control study in the Tuscany region of Italy. Parkinsonism Relat Disord. 2004;10(8):481–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Environmental Health Science [grant numbers ES10544, U54ES12078, 5P30 ES07048], National Institute of Neurological Disorders and Stroke [grant number NS 038367], and Department of Defense Prostate Cancer Research Program [grant number 051037]; in addition, initial pilot funding was provided by the American Parkinson’s Disease Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Costello, S., Cockburn, M. et al. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol 26, 547–555 (2011). https://doi.org/10.1007/s10654-011-9574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-011-9574-5

Keywords

Navigation