European Journal of Epidemiology

, Volume 26, Issue 1, pp 67–77 | Cite as

LifeGene—a large prospective population-based study of global relevance

  • Catarina Almqvist
  • Hans-Olov Adami
  • Paul W. Franks
  • Leif Groop
  • Erik Ingelsson
  • Juha Kere
  • Lauren Lissner
  • Jan-Eric Litton
  • Markus Maeurer
  • Karl Michaëlsson
  • Juni Palmgren
  • Göran Pershagen
  • Alexander Ploner
  • Patrick F. Sullivan
  • Gunnel Tybring
  • Nancy L. Pedersen
NEW STUDY

Abstract

Studying gene-environment interactions requires that the amount and quality of the lifestyle data is comparable to what is available for the corresponding genomic data. Sweden has several crucial prerequisites for comprehensive longitudinal biomedical research, such as the personal identity number, the universally available national health care system, continuously updated population and health registries and a scientifically motivated population. LifeGene builds on these strengths to bridge the gap between basic research and clinical applications with particular attention to populations, through a unique design in a research-friendly setting. LifeGene is designed both as a prospective cohort study and an infrastructure with repeated contacts of study participants approximately every 5 years. Index persons aged 18–45 years old will be recruited and invited to include their household members (partner and any children). A comprehensive questionnaire addressing cutting-edge research questions will be administered through the web with short follow-ups annually. Biosamples and physical measurements will also be collected at baseline, and re-administered every 5 years thereafter. Event-based sampling will be a key feature of LifeGene. The household-based design will give the opportunity to involve young couples prior to and during pregnancy, allowing for the first study of children born into cohort with complete pre-and perinatal data from both the mother and father. Questions and sampling schemes will be tailored to the participants’ age and life events. The target of LifeGene is to enrol 500,000 Swedes and follow them longitudinally for at least 20 years.

Keywords

Biobank Cohort study Epidemiology Prospective study Questionnaires Population genetics 

Abbreviations

DLW

Doubly labelled water

DNA

Deoxyribonucleic acid

EDTA

Ethylenediaminetetraacetic acid

GWAS

Genome wide association studies

ILI

Influenza-like illness

PCR

Polymerase chain reaction

WHO

World Health Organisation

References

  1. 1.
    Ollier W, Sprosen T, Peakman T. UK Biobank: from concept to reality. Pharmacogenomics. 2005;6(6):639–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Gulcher J, Stefansson K. Population genomics: laying the groundwork for genetic disease modeling and targeting. Clin Chem Lab Med. 1998;36(8):523–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakamura Y. The BioBank Japan project. Clin Adv Hematol Oncol. 2007;5(9):696–7.PubMedGoogle Scholar
  4. 4.
    Chen Z, Lee L, Chen J, Collins R, Wu F, Guo Y, et al. Cohort profile: the Kadoorie study of chronic disease in China (KSCDC). Int J Epidemiol. 2005;34(6):1243–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Naess O, Sogaard AJ, Arnesen E, Beckstrom AC, Bjertness E, Engeland A, et al. Cohort profile: cohort of Norway (CONOR). Int J Epidemiol. 2008;37(3):481–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Stolk RP, Rosmalen JG, Postma DS, de Boer RA, Navis G, Slaets JP, et al. Universal risk factors for multifactorial diseases: LifeLines: a three-generation population-based study. Eur J Epidemiol. 2008;23(1):67–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Nilsen RM, Vollset SE, Gjessing HK, Skjaerven R, Melve KK, Schreuder P, et al. Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr Perinat Epidemiol. 2009;23(6):597–608.CrossRefPubMedGoogle Scholar
  8. 8.
    Golding J, Pembrey M, Jones R. ALSPAC–the Avon longitudinal study of parents and children. I. study methodology. Paediatr Perinat Epidemiol. 2001;15(1):74–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Landrigan PJ, Trasande L, Thorpe LE, Gwynn C, Lioy PJ, D’Alton ME, et al. The National Children’s Study: a 21-year prospective study of 100,000 American children. Pediatrics. 2006;118(5):2173–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Keil T, Kulig M, Simpson A, Custovic A, Wickman M, Kull I, et al. European birth cohort studies on asthma and atopic diseases: II. Comparison of outcomes and exposures-a GA2LEN initiative. Allergy. 2006;61(9):1104–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJ, Cooper C. Cohort profile: the Southampton women’s survey. Int J Epidemiol. 2006;35(1):42–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, Peterson DL, et al. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science. 2009;326(5952):585–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171–4.PubMedGoogle Scholar
  14. 14.
    Brooks PM. The burden of musculoskeletal disease-a global perspective. Clin Rheumatol. 2006;25(6):778–81.CrossRefPubMedGoogle Scholar
  15. 15.
    The global burden of disease; 2004 update. Available from www.who.int/evidence/bod. Geneva, Switzerland: WHO Press; 2006 [cited 2010, June 14].
  16. 16.
    Shargorodsky J, Curhan SG, Curhan GC, Eavey R. Change in prevalence of hearing loss in US adolescents. JAMA. 2010;304(7):772–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Ekman A, Litton JE. New times, new needs; e-epidemiology. Eur J Epidemiol. 2007;22(5):285–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Ekman A, Dickman PW, Klint A, Weiderpass E, Litton JE. Feasibility of using web-based questionnaires in large population-based epidemiological studies. Eur J Epidemiol. 2006;21(2):103–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Ekman A, Klint A, Dickman PW, Adami HO, Litton JE. Optimizing the design of web-based questionnaires—experience from a population-based study among 50,000 women. Eur J Epidemiol. 2007;22(5):293–300.CrossRefPubMedGoogle Scholar
  20. 20.
    Bexelius C, Honeth L, Ekman A, Eriksson M, Sandin S, Bagger-Sjoback D, et al. Evaluation of an internet-based hearing test-comparison with established methods for detection of hearing loss. J Med Internet Res. 2008;10(4):e32.CrossRefPubMedGoogle Scholar
  21. 21.
    Collins FS. The case for a US prospective cohort study of genes and environment. Nature. 2004;429(6990):475–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Burton PR, Hansell AL, Fortier I, Manolio TA, Khoury MJ, Little J, et al. Size matters: just how big is BIG?: Quantifying realistic sample size requirements for human genome epidemiology. Int J Epidemiol. 2009;38(1):263–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Hernán MA, Robins JM. Observational studies analyzed like randomized experiments: best of both worlds. Epidemiology. 2008;19:789–92.CrossRefGoogle Scholar
  24. 24.
    Prentice RL, Pettinger M, Anderson GL. Statistical issues arising in the Women’s Health Initiative. Biometrics. 2005;61(4):899–911. discussion-41.CrossRefPubMedGoogle Scholar
  25. 25.
    Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Ioannidis JP, Adami HO. Nested randomized trials in large cohorts and biobanks: studying the health effects of lifestyle factors. Epidemiology. 2008;19(1):75–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Collins FS, Manolio TA. Merging and emerging cohorts: necessary but not sufficient. Nature. 2007;445(7125):259.CrossRefPubMedGoogle Scholar
  28. 28.
    Willett WC, Blot WJ, Colditz GA, Folsom AR, Henderson BE, Stampfer MJ. Merging and emerging cohorts: not worth the wait. Nature. 2007;445(7125):257–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Catarina Almqvist
    • 1
    • 2
  • Hans-Olov Adami
    • 1
    • 3
  • Paul W. Franks
    • 4
    • 5
  • Leif Groop
    • 6
  • Erik Ingelsson
    • 1
  • Juha Kere
    • 7
  • Lauren Lissner
    • 8
  • Jan-Eric Litton
    • 1
  • Markus Maeurer
    • 9
    • 10
  • Karl Michaëlsson
    • 11
  • Juni Palmgren
    • 1
    • 12
  • Göran Pershagen
    • 13
  • Alexander Ploner
    • 1
  • Patrick F. Sullivan
    • 14
  • Gunnel Tybring
    • 1
  • Nancy L. Pedersen
    • 1
  1. 1.Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
  2. 2.Astrid Lindgren Children’s HospitalKarolinska University HospitalStockholmSweden
  3. 3.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  4. 4.Department of Public Health & Clinical Medicine, Section for MedicineUmeå University Hospital SwedenUmeåSweden
  5. 5.Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University HospitalLund UniversityMalmoSweden
  6. 6.Department of Clinical Sciences, Diabetes and Endocrinology UnitLund UniversityLundSweden
  7. 7.Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
  8. 8.Department of Public Health and Community MedicineUniversity of GothenburgGothenburgSweden
  9. 9.Department of Microbiology, Tumor and Cell Biology Karolinska InstitutetStockholmSweden
  10. 10.Swedish Institute for Infectious Disease ControlStockholmSweden
  11. 11.Department of Surgical SciencesUppsala UniversityUppsalaSweden
  12. 12.Department of Mathematical StatisticsStockholm UniversityStockholmSweden
  13. 13.Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
  14. 14.Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations