Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis

Abstract

The evidence for the efficacy of walking in reducing the risk of and preventing coronary heart disease (CHD) is not completely understood. This meta-analysis aimed to quantify the dose-response relationship between walking and CHD risk reduction for both men and women in the general population. Studies on walking and CHD primary prevention between 1954 and 2007 were identified through Medline, SportDiscus and the Cochrane Database of Systematic Reviews. Random-effect meta-regression models were used to pool the relative risks from individual studies. A total of 11 prospective cohort studies and one randomized control trial study met the inclusion criteria, with 295,177 participants free of CHD at baseline and 7,094 cases at follow-up. The meta-analysis indicated that an increment of approximately 30 min of normal walking a day for 5 days a week was associated with 19% CHD risk reduction (95% CI = 14–23%; P-heterogeneity = 0.56; I 2 = 0%). We found no evidence of heterogeneity between subgroups of studies defined by gender (P = 0.67); age of the study population (P = 0.52); or follow-up duration (P = 0.77). The meta-analysis showed that the risk for developing CHD decreases as walking dose increases. Walking should be prescribed as an evidence-based effective exercise modality for CHD prevention in the general population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    World Health Organisation. Cardiovascular diseases. [Online] Geneva: WHO; 2002 [updated 2002; cited 12 January, 2008]; Available from: http://www.who.int/cardiovascular_diseases/resources/atlas/en/index.html.

  2. 2.

    World Health Organisation. World health report 2002: reducing risk, promoting healthy life. Geneva: WHO; 2002.

    Google Scholar 

  3. 3.

    Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health. 1987;8:253–87. doi:10.1146/annurev.pu.08.050187.001345.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol. 1990;132:612–28.

    PubMed  CAS  Google Scholar 

  5. 5.

    US Department of Health and Human Services. Physical activity and health: a report of the surgeon general. Atlanta: Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.

    Google Scholar 

  6. 6.

    Wannamethee SG, Shaper AG. Physical activity in the prevention of cardiovascular disease: an epidemiological perspective. Sports Med. 2001;31:101–14. doi:10.2165/00007256-200131020-00003.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Eaton CB. Relation of physical activity and cardiovascular fitness to coronary heart disease, part I: a meta-analysis of the independent relation of physical activity and coronary heart disease. J Am Board Fam Pract. 1992;5:31–42.

    PubMed  CAS  Google Scholar 

  8. 8.

    Bauman A. Updating the evidence that physical activity is good for health: an epidemiological review 2000–2003. J Sci Med Sport. 2004;7:6–19. doi:10.1016/S1440-2440(04)80273-1.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674–88. doi:10.1249/01.MSS.0000121945.36635.61.

    PubMed  Article  Google Scholar 

  10. 10.

    Goldberg AP. Aerobic and resistive exercise modify risk factors for coronary heart disease. Med Sci Sports Exerc. 1989;21:669–74. doi:10.1249/00005768-198912000-00008.

    PubMed  CAS  Google Scholar 

  11. 11.

    Egger G, Champion N, Bolton A. The fitness leader’s handbook. 4th ed. Sydney: Kangaroo Press; 1998.

    Google Scholar 

  12. 12.

    Australian Bureau of Statistics. Physical activity in Australia: a snapshot, 2004–05 Canberra; 2006 [updated 2006; cited 2008 January 12]; Available from: http://www.abs.gov.au/ausstats/abs@.nsf/mf/4835.0.55.001.

  13. 13.

    Reis JP, Macera CA, Ainsworth BE, Hipp DA. Prevalence of total daily walking among US adults, 2002–2003. J Phys Act Health. 2008;5:337–46.

    PubMed  Google Scholar 

  14. 14.

    The National Travel Survey. Walking in Great Britain 1996 [updated 1996; cited 2007 December 12]; Available from: http://www.dft.gov.uk/pgr/statistics/datatablespublications/personal/articles/walkingreatbritain1?version=1.

  15. 15.

    Morris JN, Hardman AE. Walking to health. Sports Med. 1997;23:306–32. doi:10.2165/00007256-199723050-00004.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Manson JE, Greenland P, LaCroix AZ, Stefanick ML, Mouton CP, Oberman A, et al. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med. 2002;347:716–25. doi:10.1056/NEJMoa021067.

    PubMed  Article  Google Scholar 

  17. 17.

    Oguma Y, Shinoda-Tagawa T. Physical activity decreases cardiovascular disease risk in women: review and meta-analysis. Am J Prev Med. 2004;26:407–18. doi:10.1016/j.amepre.2004.02.007.

    PubMed  Article  Google Scholar 

  18. 18.

    Hamer M, Chida Y. Walking and primary prevention: a meta-analysis of prospective cohort studies. Br J Sports Med. 2008;42:238–43. doi:10.1136/bjsm.2007.039974.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Kesaniemi YK, Danforth E Jr, Jensen MD, Kopelman PG, Lefebvre P, Reeder BA. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33:S351–8. doi:10.1097/00005768-200106001-00003.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001;33:754–61. doi:10.1097/00005768-200105000-00012.

    PubMed  CAS  Google Scholar 

  21. 21.

    Kohl HW III. Physical activity and cardiovascular disease: evidence for a dose response. Med Sci Sports Exerc. 2001;33:S472–83. doi:10.1097/00005768-200106001-00017. discussion S93-4.

    PubMed  Article  Google Scholar 

  22. 22.

    Morris JN, Clayton DG, Everitt MG, Semmence AM, Burgess EH. Exercise in leisure time: coronary attack and death rates. Br Heart J. 1990;63:325–34. doi:10.1136/hrt.63.6.325.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Sesso HD, Paffenbarger RS Jr, Lee IM. Physical activity and coronary heart disease in men: The Harvard Alumni Health Study. Circulation. 2000;102:975–80.

    PubMed  CAS  Google Scholar 

  24. 24.

    Hakim AA, Curb JD, Petrovitch H, Rodriguez BL, Yano K, Ross GW, et al. Effects of walking on coronary heart disease in elderly men: the Honolulu Heart Program. Circulation. 1999;100:9–13.

    PubMed  CAS  Google Scholar 

  25. 25.

    Paffenbarger RS Jr, Wing AL, Hyde RT. Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol. 1978;108:161–75.

    PubMed  Google Scholar 

  26. 26.

    LaCroix AZ, Leveille SG, Hecht JA, Grothaus LC, Wagner EH. Does walking decrease the risk of cardiovascular disease hospitalizations and death in older adults? J Am Geriatr Soc. 1996;44:113–20.

    PubMed  CAS  Google Scholar 

  27. 27.

    Lee IM, Rexrode KM, Cook NR, Manson JE, Buring JE. Physical activity and coronary heart disease in women: is “no pain, no gain” passe? JAMA. 2001;285:1447–54. doi:10.1001/jama.285.11.1447.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Shaper AG, Wannamethee G, Weatherall R. Physical activity and ischaemic heart disease in middle-aged British men. Br Heart J. 1991;66:384–94. doi:10.1136/hrt.66.5.384.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Tanasescu M, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, Hu FB. Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2002;288:1994–2000. doi:10.1001/jama.288.16.1994.

    PubMed  Article  Google Scholar 

  30. 30.

    Manson JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341:650–8. doi:10.1056/NEJM199908263410904.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Folsom AR, Arnett DK, Hutchinson RG, Liao F, Clegg LX, Cooper LS. Physical activity and incidence of coronary heart disease in middle-aged women and men. Med Sci Sports Exerc. 1997;29:901–9. doi:10.1097/00005768-199707000-00009.

    PubMed  CAS  Google Scholar 

  32. 32.

    Bassett DR Jr, Cureton AL, Ainsworth BE. Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc. 2000;32:1018–23. doi:10.1097/00005768-200005000-00021.

    PubMed  Article  Google Scholar 

  33. 33.

    Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504. doi:10.1097/00005768-200009001-00009.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res. 1993;2:121–45. doi:10.1177/096228029300200202.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006;6:40–57.

    Google Scholar 

  36. 36.

    Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–9.

    PubMed  CAS  Google Scholar 

  37. 37.

    Hamling J, Lee P, Weitkunat R, Ambuhl M. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med. 2008;27:954–70. doi:10.1002/sim.3013.

    PubMed  Article  Google Scholar 

  38. 38.

    Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. doi:10.1002/sim.1186.

    PubMed  Article  Google Scholar 

  39. 39.

    Egger M, Smith GD, Altman DG. Systematic reviews in health care: meta-analysis in context London. UK: The BMJ Publishing Group; 2001.

    Google Scholar 

  40. 40.

    Pereira MA, Kriska AM, Day RD, Cauley JA, LaPorte RE, Kuller LH. A randomized walking trial in postmenopausal women: effects on physical activity and health 10 years later. Arch Intern Med. 1998;158:1695–701. doi:10.1001/archinte.158.15.1695.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Shephard RJ. Absolute versus relative intensity of physical activity in a dose-response context. Med Sci Sports Exerc. 2001;33:S400–18. doi:10.1097/00005768-200106001-00008. discussion S19-20.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Shephard RJ. Intensity, frequency and duration of exercise as determinants of the response to a training regimen. Int Z Angew Physiol. 1968;26:272–8.

    PubMed  CAS  Google Scholar 

  43. 43.

    Kriska A. Ethnic and cultural issues in assessing physical activity. Res Q Exerc Sport. 2000;71:S47–53.

    PubMed  CAS  Google Scholar 

  44. 44.

    Ainsworth BE, Leon AS, Richardson MT, Jacobs DR, Paffenbarger RS Jr. Accuracy of the College Alumnus Physical Activity Questionnaire. J Clin Epidemiol. 1993;46:1403–11. doi:10.1016/0895-4356(93)90140-V.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Lee IM, Hsieh CC, Paffenbarger RS Jr. Exercise intensity and longevity in men. The Harvard Alumni Health Study. JAMA. 1995;273:1179–84. doi:10.1001/jama.273.15.1179.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Thorstensson A, Roberthson H. Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiol Scand. 1987;131:211–4. doi:10.1111/j.1748-1716.1987.tb08228.x.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Duncan JJ, Gordon NF, Scott CB. Women walking for health and fitness. How much is enough? JAMA. 1991;9:266–3295. doi:10.1001/jama.266.23.3295.

    Google Scholar 

  48. 48.

    Kelley GA, Kelley KS, Tran ZV. Walking, lipids, and lipoproteins: a meta-analysis of randomized controlled trials. Prev Med. 2004;38:651–61. doi:10.1016/j.ypmed.2003.12.012.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Tucker LA, Friedman GM. Walking and serum cholesterol in adults. Am J Public Health. 1990;80:1111–3. doi:10.2105/AJPH.80.9.1111.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Wood PD, Haskell WL, Blair SN, Williams PT, Krauss RM, Lindgren FT, et al. Increased exercise level and plasma lipoprotein concentrations: a one-year, randomized, controlled study in sedentary, middle-aged men. Metabolism. 1983;32:31–9. doi:10.1016/0026-0495(83)90152-X.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Gordon NF, Cooper KH. Controlling cholesterol levels through exercise. Compr Ther. 1988;14:52–7.

    PubMed  CAS  Google Scholar 

  52. 52.

    Mayer-Davis EJ, D’Agostino R Jr, Karter AJ, Haffner SM, Rewers MJ, Saad M, et al. Intensity and amount of physical activity in relation to insulin sensitivity: the insulin resistance atherosclerosis study. JAMA. 1998;279:669–74. doi:10.1001/jama.279.9.669.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Hughes RA, Thorland WG, Housh TJ, Johnson GO. The effect of exercise intensity on serum lipoprotein responses. J Sports Med Phys Fitness. 1990;30:254–60.

    PubMed  CAS  Google Scholar 

  54. 54.

    Donahue RP, Abbott RD, Reed DM, Yano K. Physical activity and coronary heart disease in middle-aged and elderly men: the Honolulu Heart Program. Am J Public Health. 1988;78:683–5. doi:10.2105/AJPH.78.6.683.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Andrew M, Carter C, O’Brodovich H, Heigenhauser G. Increases in factor VIII complex and fibrinolytic activity are dependent on exercise intensity. J Appl Physiol. 1986;60:1917–22.

    PubMed  CAS  Google Scholar 

  56. 56.

    Duncan JJ, Farr JE, Upton SJ, Hagan RD, Oglesby ME, Blair SN. The effects of aerobic exercise on plasma catecholamines and blood pressure in patients with mild essential hypertension. JAMA. 1985;254:2609–13. doi:10.1001/jama.254.18.2609.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Gokce N, Vita JA, Bader DS, Sherman DL, Hunter LM, Holbrook M, et al. Effect of exercise on upper and lower extremity endothelial function in patients with coronary artery disease. Am J Cardiol. 2002;90:124–7. doi:10.1016/S0002-9149(02)02433-5.

    PubMed  Article  Google Scholar 

  58. 58.

    Moyna NM, Thompson PD. The effect of physical activity on endothelial function in man. Acta Physiol Scand. 2004;180:113–23. doi:10.1111/j.0001-6772.2003.01253.x.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Pollock ML, Carroll JF, Graves JE, Leggett SH, Braith RW, Limacher M, et al. Injuries and adherence to walk/jog and resistance training programs in the elderly. Med Sci Sports Exerc. 1991;23:1194–200. doi:10.1249/00005768-199110000-00014.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the valuable comments by two anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henry Zheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zheng, H., Orsini, N., Amin, J. et al. Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis. Eur J Epidemiol 24, 181–192 (2009). https://doi.org/10.1007/s10654-009-9328-9

Download citation

Keywords

  • Coronary heart disease
  • Exercise
  • Meta-analysis
  • Physical activity
  • Walking