Skip to main content
Log in

Spatial distribution and pollution assessment of metals in sediments along the industrialized coast of East Java, Indonesia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The eastern coastline of Gresik, located in East Java, Indonesia, experienced significant industrialization, leading to the development of numerous diverse sectors. These diverse industrial activities, in addition to other human activities, result in the contamination of sediment across the eastern coast of Gresik with a variety of metals. Metals like arsenic (As), cadmium (Cd), copper (Cu), and zinc (Zn) have exceeded the international standards for sediment quality, potentially causing significant harm to the aquatic ecosystem in this coastal region. The results of the multivariate analysis indicate that the metals found in the sediment are related to a combination of anthropogenic inputs, specifically those originating from industrial effluents in the area under study. Based on the assessment of enrichment factor, contamination factor, geo-accumulation index, degree of contamination, ecological risk index, and pollution load index, it can be concluded that the metals examined displayed different degrees of sediment contamination, ranging from minimal to severely contaminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that all of the data that supports the conclusions of this study can be found within the article and its supplementary materials.

References

  • Aboubakar, A., Douaik, A., Mewouo, Y. C. M., Madong, R. C. B. A., Dahchour, A., & Hajjaji, S. E. (2021). Determination of background values and assessment of pollution and ecological risk of heavy metals in urban agricultural soils of Yaoundé, Cameroon. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-021-02876-4

    Article  Google Scholar 

  • Ali, M. M., Ali, M. K., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring and Management, 5, 27–35.

    Article  Google Scholar 

  • Ali, M. M., Islam, M. S., Islam, A. R. M. T., Bhuyan, M. S., Ahmed, A. S. S., Rahman, M. Z., & Rahman, M. M. (2022). Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh. Marine Pollution Bulletin, 175, 113274. https://doi.org/10.1016/j.marpolbul.2021.113274

    Article  CAS  Google Scholar 

  • Ansari, T. M., Marr, I. I., & Tariq, N. (2004). Heavy metals in marine pollution perspective—A mini review. Journal of Applied Science, 4, 1–20. https://doi.org/10.3923/jas.2004.1.20

    Article  Google Scholar 

  • Antonini, J. M. (2023). Health effects of welding. Critical Reviews in Toxicology, 33, 61–103.

    Article  Google Scholar 

  • Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ). (2000). Australian and New Zealand guidelines for fresh and marine water quality. Volume 1, Australian and New Zealand Environment and Conservation Council. Canberra.

  • Ayodele, O. S., & Ayodeji, I. V. (2020). Heavy metals geochemistry and pollution status of coastal sediments in Ayetoro Area, Southwestern Nigeria. Journal of Environment Pollution and Human Health, 8, 98–110.

    CAS  Google Scholar 

  • Bai, J. H., Cui, B. S., Chen, B., Zhang, K. J., Deng, W., Gao, H. F., & Xiao, R. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222, 301–306.

    Article  CAS  Google Scholar 

  • Bastami, K. D., Bagheri, H., & Kheirabadi, V. (2014). Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin, 81, 262–267.

    Article  CAS  Google Scholar 

  • Bayhan, E., Ergin, M., Temel, A., & Keskin, S. (2001). Sedimentology and mineralogy of surfical bottom deposits from the Aegean-Çanakkale-Marmara transition (Eastern Mediterranean): Effect of marine and terrestrial factors. Marine Geology, 175, 297–315.

    Article  CAS  Google Scholar 

  • Begum, W., Rai, S., Banerjee, S., Bhattacharjee, S., Mondal, M. H., Bhattarai, A., & Saha, B. (2022). A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances, 12, 9139. https://doi.org/10.1039/d2ra00378c

    Article  CAS  Google Scholar 

  • Beh, C. L., Chuah, T. G., Nourouzi, M. N., & Choong, T. S. Y. (2012). Removal of heavy metals from steel making waste water by using electric arc furnace slag. E-Journal of Chemistry, 9(4), 2557–2564.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1980). Early Diagenesis: A theoretical approach. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Bhandari, V. M., Sorokhaibam, L. G., & Ranade, V. V. (2016). Industrial wastewater treatment for fertilizer industry—A case study. Desalination and Water Treatment. https://doi.org/10.1080/19443994.2016.1186399

    Article  Google Scholar 

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, 306. https://doi.org/10.1007/s10661-015-4563-x

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME). (1999). Canadian sediment quality guidelines for the protection of aquatic life: mercury. In: Canadian Environmental Quality Guidelines

  • Chen, F., Li, X., Luo, Z., Ma, J., Zhu, Q., & Zhang, S. (2018). Advanced treatment of copper smelting wastewater by the combination of internal microelectrolysis and electrocoagulation. Separation Science and Technology. https://doi.org/10.1080/01496395.2018.1463265

    Article  Google Scholar 

  • Cui, B., Zhang, Q., Zhang, K., Liu, X., & Zhang, H. (2011). Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environmental Pollution, 159, 1297–1306.

    Article  CAS  Google Scholar 

  • Dhame, S., Kumar, A., Ramanathan, A. L., & Chaudhari, P. (2016). Elemental composition, distribution and control of biogenic silica in the anthropogenically disturbed and pristine zone inter-tidal sediments of Indian Sundarbans mangrove-estuarine complex. Marine Pollution Bulletin, 111, 68–85. https://doi.org/10.1016/j.marpolbul.2016.07.027

    Article  CAS  Google Scholar 

  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008

    Article  CAS  Google Scholar 

  • Eldos, H. I., Khan, M., Zouari, N., Saeed, S., & Al-Ghouti, M. A. (2022). Characterization and assessment of process water from oil and gas production: A case study of process wastewater in Qatar. Case Studies in Chemical and Environmental Engineering, 6, 100210. https://doi.org/10.1016/j.cscee.2022.100210

    Article  CAS  Google Scholar 

  • Environmental Integrity Project. (2016). Toxic Wastewater from Coal Plants. http://www.environmentalintegrity.org

  • Gargouri, D., Gzam, M., Kharroubi, A., & Jedoui, Y. (2018). Use of sediment quality indicators for heavy metals contamination and ecological risk assessment in urbanized coastal zones. Environmental Earth Sciences, 77, 381. https://doi.org/10.1007/s12665-018-7567-3

    Article  CAS  Google Scholar 

  • Ghregat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring and Assessment, 178, 95–109.

    Article  Google Scholar 

  • Gresik Regency Government. (2021). Prospects and Opportunities for Industrial Investment in Gresik Regency. Institut Teknologi Sepuluh Nopember Surabaya dan Badan Perencanaan Pembangunan, Penelitian dan Pengembangan Daerah Kabupaten Gresik. 288 pp. (In Indonesia language).

  • Güzel, B., Canlı, O., & Çelebi, A. (2022). Characterization, source and risk assessments of sediment contaminants (PCDD/Fs, DL-PCBs, PAHs, PCBs, OCPs, metals) in the urban water supply area. Applied Geochemistry, 143, 105394.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Han, F. X., & Singer, A. (2007). Biogeochemistry of Trace Elements in Arid Environments. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6024-3

    Book  Google Scholar 

  • Hansen, H. K., & Ottosen, L. M. (2010). Removal of arsenic from wastewaters by airlift electrocoagulation: part 3: copper smelter wastewater treatment. Separation Science and Technology, 45, 1326–1330.

    Article  CAS  Google Scholar 

  • Hossain, M. B., Ahmed, A. S. S., & Sarker, M. S. I. (2018). Human health risks of Hg, As, Mn, and Cr through consumption of fish, Ticto barb (Puntius ticto) from a tropical river Bangladesh. Environmental Science and Pollution Research, 25, 31727–31736.

    Article  CAS  Google Scholar 

  • Hossain, M. B., Rahman, M. A., Hossain, M. K., Nur, A.-S.U., Sultana, S., Semme, S., Albeshr, M. F., Arai, T., & Yu, J. (2022). Contamination status and associated ecological risk assessment of heavy metals in different wetland sediments from an urbanized estuarine ecosystem. Marine Pollution Bulletin, 185, 114246. https://doi.org/10.1016/j.marpolbul.2022.114246

    Article  CAS  Google Scholar 

  • Hu, D., He, J., Lu, C., Ren, L., Fan, Q., Wang, J., & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxology and Environmental Safety, 93, 135–144.

    Article  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Al-Mamun, M. H., & Hoque, M. F. (2015). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences, 73, 1837–1848.

    Article  CAS  Google Scholar 

  • Islam, M. S., Proshad, R., & Ahmed, S. (2018). Ecological risk of heavy metals in sediment of an urban river in Bangladesh. Human and Ecological Risk Assessment, 24, 699–720.

    Article  CAS  Google Scholar 

  • Iwegbue, C. M. A., Osakwe, S. A., Elokozie, C. I., & Nwajei, G. E. (2015). Concentrations, Human and Ecological Risks of Metals in Soils in the Vicinity of Asphalt Plants in Delta States, Nigeria. Jordan Journal of Earth and Environmental Sciences, 7, 49–63.

    Google Scholar 

  • Iyaka, Y. A. (2011). Nickel in soils: A review of its distribution and impacts. Scientific Research and Essays, 6, 6774–6777. https://doi.org/10.5897/SREX11.035

    Article  Google Scholar 

  • Janas, M., Zawadzka, A., & Cichowicz, R. (2018). The influence of selected factors on leaching of metals from sewage sludge. Environmental Science and Pollution Research, 25, 33240–33248. https://doi.org/10.1007/s11356-018-3094-8

    Article  CAS  Google Scholar 

  • Karageorgis, A. P., & Anagnostou, C. L. (2001). Particulate matter spatial-temporal distribution and associated surface sediment properties: Thermaikos Gulf and Sporades Basin, NW Aegean Sea. Continental Shelf Research, 21, 21412153.

    Article  Google Scholar 

  • Karageorgis, A. P., Anagnostou, C. L., & Kaberi, H. (2005). Geochemistry and minerology of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact. Applied Geochemistry, 20, 69–88.

    Article  CAS  Google Scholar 

  • Kasprzak, K. S., Sunderman, F. W., Jr., & Salnikow, K. (2003). Nickel carcinogenesis. Mutation Research, 533, 67–97. https://doi.org/10.1016/j.mrfmmm.2003.08.021

    Article  CAS  Google Scholar 

  • Krishnaswami, S. (1981). Geochronology of estuarine sediments. In River Inputs to Ocean System. Proceeding of a Review Workshop Held at FAO headquarters, Rome, Italy 26–30 March 1979.

  • Kumar, A., Ramanathan, A. L., Prasad, M. B. K., Datta, D., Kumar, M., & Sappal, S. M. (2014). (2016) Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: A baseline study before Sundarban oil spill of December, 2014. Environmental Science and Pollution Research, 23(9), 8985–8999. https://doi.org/10.1007/s11356-016-6086-6

    Article  CAS  Google Scholar 

  • Li, J., He, M., Han, W., & Gu, Y. (2009). Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Journal of Hazardous Materials, 164, 976–981.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Carr, S., Clader, F. D., Long, E. D., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Mohammed, F. K., Sieuraj, J., & Seepersaud, M. (2017). A preliminary assessment of heavy metals in sediments from the Cipero and South Oropouche Rivers in Trinidad, West Indies. Environmental Monitoring and Assessment, 189, 396. https://doi.org/10.1007/s10661-017-6077-1

    Article  CAS  Google Scholar 

  • Mostafa, M. T., El-Nady, H., Gomaa, R. M., & Salman, S. A. (2024). Contamination and sediment quality evaluation of toxic metals enrichment in heavy mineral-rich beach sands of Arish City, Northeastern Egypt. Euro-Mediterranean Journal for Environmental Integration, 9, 7–22. https://doi.org/10.1007/s41207-023-00449-0

    Article  Google Scholar 

  • Muller, G. (1979). [Schwermetallen in den Redimen des rheins: Veranderungen seit 1971]. Umschau. 79(24), 778–83. German.

  • Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chemie in Unserer Zeit, 105, 157–164.

    Google Scholar 

  • Mussa, C., Biswick, T., Changadeya, W., Mapoma, H. W., & Junginger, A. (2020). Occurrence and ecological risk assessment of heavy metals in agricultural soils of Lake Chilwa catchment in Malawi. Southern Africa. SN Applied Sciences, 2, 1910. https://doi.org/10.1007/s42452-020-03718-7

    Article  CAS  Google Scholar 

  • Oaf, W., & Os, E. (2017). Heavy metals content of an oily wastewater effluent from an oil firm at the point of discharge. International Journal of Chemistry, Pharmacy & Technology, 2(4), 154–161.

    Google Scholar 

  • Olayinka-Olagunju, J. O., Dosumu, A. A., & Olatunji-Ojo, A. M. (2021). Bioaccumulation of heavy metals in pelagic and benthic fishes of Ogbese River, Ondo State, South-Western Nigeria. Water Air Soil Pollution, 232, 44. https://doi.org/10.1007/s11270-021-04987-7

    Article  CAS  Google Scholar 

  • Proshad, R., Kormoker, T., & Islam, S. (2019). Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River, Bangladesh. Toxin Reviews. https://doi.org/10.1080/15569543.2018.1564143

    Article  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19, 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4

    Article  Google Scholar 

  • Rahman, M. S., Ahmed, A. S. S., Rahman, M. M., Babu, S. M. O. F., Sultana, S., Sarker, S. I., Awual, R., Rahman, M. M., & Rahman, M. (2021). Temporal assessment of heavy metal concentration and surface water quality representing the public health evaluation from the Meghna River estuary. Bangladesh. Applied Water Science, 11, 121. https://doi.org/10.1007/s13201-021-01455-9

    Article  CAS  Google Scholar 

  • Rakib, R. J., Hossain, M. B., Jolly, Y. N., Akther, S., & Islam, S. (2021). EDXRF detection of trace elements in salt marsh sediment of Bangladesh and probabilistic ecological risk assessment. Soil and Sediment Contamination. https://doi.org/10.1080/15320383.2021.1923644

    Article  Google Scholar 

  • Ranjan, P., Ramanathan, A. L., Kumar, A., Singhal, R. K., Datta, D., & Venkatesh, M. (2018). Trace metal distribution, assessment and enrichment in the surface sediments of Sundarban mangrove ecosystem in India and Bangladesh. Marine Pollution Bulletin, 127, 541–547. https://doi.org/10.1016/j.marpolbul.2017.11.047

    Article  CAS  Google Scholar 

  • Rezapour, S., Asadzadeh, F., Nouri, A., Khodaverdiloo, H., & Mohammad Heidari, M. (2022). Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin. Scientific Reports, 12, 17455. https://doi.org/10.1038/s41598-022-21752-w

    Article  CAS  Google Scholar 

  • Sadhu, K., Adhikari, K., & Gangopadhyay, A. (2012). Assessment of heavy metal contamination of soils in and around open cast mines of Raniganj area, India. International Journal of Electrical and Electronics Engineering, 2, 77–85.

    Google Scholar 

  • Savosko, V., Lykholat, Yu., Komarova, I., & Yevtushenko, E. (2022). The impact of forest plant communities on the content of heavy metals in soil profiles of the iron ore mining area, Kryvyi Rih District, Ukraine. Baltic Forestry, 28, 631.

    Article  Google Scholar 

  • Schaumlöffel, D. (2012). Nickel species: Analysis and toxic effects. Journal of Trace Elements in Medicine and Biology, 26, 1–6. https://doi.org/10.1016/j.jtemb.2012.01.002

    Article  CAS  Google Scholar 

  • Shi, J., Duan, X., Qi, X., Li, G., Yan, G., & Wang, H. (2023). Removal of arsenic from copper smelting wastewater using zinc slag to synthesize scorodite. Journal of Materials Science Materials in Electronics, 34, 973. https://doi.org/10.1007/s10854-023-10376-z

    Article  CAS  Google Scholar 

  • Shirani, M., Afzali, K. N., Jahan, S., Strezov, V., & Soleimani-Sardo, M. (2020). Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast Iran. Scientific Reports, 10, 4775. https://doi.org/10.1038/s41598-020-61838-x

    Article  CAS  Google Scholar 

  • Soegianto, A., Nurfiyanti, P. E., Saputri, R. N. R., Affandi, A., & Payus, C. M. (2022). Assessment of the health risks related with metal accumulation in blue swimming crab (Portunus pelagicus) caught in East Java coastal waters. Indonesia. Marine Pollution Bulletin, 177, 113573. https://doi.org/10.1016/j.marpolbul.2022.113573

    Article  CAS  Google Scholar 

  • Soliman, N. F., Nasr, S. M., & Okbah, M. A. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast. Egypt. Journal of Environmental Health Science and Engineering, 13, 70. https://doi.org/10.1186/s40201-015-0223-x

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186, 1837–1846.

    Article  CAS  Google Scholar 

  • Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica Et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • USEPA. (1996). Method 3050B (Revision 2): Acid digestion of sediments, sludges, and soils (pp. 1–12). Washington, U. S. Environmental Protection Agency.

  • Wang, X., Liu, B., & Zhang, W. (2020). Distribution and risk analysis of heavy metals in sediments from the Yangtze River Estuary, China. Environmental Science and Pollution Research, 27, 10802–10810. https://doi.org/10.1007/s11356-019-07581-x

  • Xia, W., Wang, R., Zhu, B., Rudstam, L. G., Liu, Y., Xu, Y., Xin, W., & Chen, Y. (2020). Heavy metal gradients from rural to urban lakes in central China. Ecological Process, 9, 47. https://doi.org/10.1186/s13717-020-00251-8

    Article  Google Scholar 

  • Xiao, R., Bai, J. H., Gao, H. F., Wang, J. J., Huang, L. B., & Liu, P. P. (2012). Distribution and contamination assessment of heavy metals in water and soils from the college town in the Pearl River Delta, China. Clean - Soil, Air, Water, 40, 1167–1173.

    Article  CAS  Google Scholar 

  • Zeyada, M. T., Kumarb, M., & Malika, A. (2019). Mutagenicity, genotoxicity and oxidative stress induced by pesticide industry wastewater using bacterial and plant bioassays. Biotechnology Reports, 24, e00389. https://doi.org/10.1016/j.btre.2019.e00389

    Article  Google Scholar 

  • Zheng, N., Wang, Q., Liang, Z., & Zheng, D. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142.

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Universitas Airlangga for funding this work through International Research Network under grant number (1664/UN3.LPPM/PT.01.03/2023).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research conceptualization and methods. AM, AS, and TWCP conducted materials preparation, data collection, curation, and analysis. AM prepared the initial version of the manuscript, and all authors provided feedback and comment on previous version of the manuscript. The final manuscript was reviewed and approved by all the authors.

Corresponding author

Correspondence to Agoes Soegianto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal research

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchellina, A., Soegianto, A., Putranto, T.W.C. et al. Spatial distribution and pollution assessment of metals in sediments along the industrialized coast of East Java, Indonesia. Environ Geochem Health 46, 205 (2024). https://doi.org/10.1007/s10653-024-01994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01994-5

Keywords

Navigation