Skip to main content
Log in

Employing Piper longum extract for eco-friendly fabrication of PtPd alloy nanoclusters: advancing electrolytic performance of formic acid and methanol oxidation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Advancement in bioinspired alloy nanomaterials has a crucial impact on fuel cell applications. Here, we report the synthesis of PtPd alloy nanoclusters via the hydrothermal method using Piper longum extract, representing a novel and environmentally friendly approach. Physicochemical characteristics of the synthesized nanoclusters were investigated using various instrumentation techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, and High-Resolution Transmission electron microscopy. The electrocatalytic activity of the biogenic PtPd nanoclusters towards the oxidation of formic acid and methanol was evaluated chronoamperometry and cyclic voltammetry studies. The surface area of the electrocatalyst was determined to be 36.6 m2g−1 by Electrochemical Surface Area (ECSA) analysis. The biologically inspired PtPd alloy nanoclusters exhibited significantly higher electrocatalytic activity compared to commercial Pt/C, with specific current responses of 0.24 mA cm − 2 and 0.17 mA cm − 2 at synthesis temperatures of 180 °C and 200 °C, respectively, representing approximately four times higher oxidation current after 120 min. This innovative synthesis approach offers a promising pathway for the development of PtPd alloy nanoclusters with enhanced electrocatalytic activity, thereby advancing fuel cell technology towards a sustainable energy solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, R., & Pasha, A. (2018). Fuel cells-a signpost to future. IOP Conf Ser Mater Sci Eng., 376, 012103. https://doi.org/10.1088/1757-899X/376/1/012103

    Article  Google Scholar 

  • Balčiūnaitė, A., Zabielaitė, A., Upskuvienė, D., Tamašauskaitė-Tamašiūnaitė, L., Stalnionienė, I., Naruškevičius, L., Vaičiūnienė, J., Selskis, A., Juškėnas, R., & Norkus, E. (2021). Platinum nanoparticles modified copper/titanium electrodes as electrocatalysts for borohydride oxidation. Materials Basel. https://doi.org/10.3390/ma14247663

    Article  Google Scholar 

  • Bhole, R., Gonsalves, D., Murugesan, G., Narasimhan, M. K., Srinivasan, N. R., Dave, N., Varadavenkatesan, T., Vinayagam, R., Govarthanan, M., & Selvaraj, R. (2023). Superparamagnetic spherical magnetite nanoparticles: Synthesis, characterization and catalytic potential. Applied Nanoscience, 13(9), 6003–6014.

    Article  CAS  Google Scholar 

  • Chen, X., Cai, Z., Chen, X., & Oyama, M. (2014). Green synthesis of graphene–PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. Journal of Materials Chemistry A, 2(2), 315–320.

    Article  CAS  Google Scholar 

  • Çögenli, M. S., & Yurtcan, A. B. (2018). Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation. International Journal of Hydrogen Energy, 43, 10698–10709. https://doi.org/10.1016/j.ijhydene.2018.01.081

    Article  CAS  Google Scholar 

  • Dosoky, S. (2019). Volatiles of Black Pepper Fruits (Piper nigrum L). Molecules, 24, 4244. https://doi.org/10.3390/molecules24234244

    Article  CAS  Google Scholar 

  • El Sawy, E. N., Brueckner, T. M., & Pickup, P. G. (2020). Electrochemical oxidation of methanol and ethanol at Rh@Pt and Ru@Pt catalysts. Journal of the Electrochemical Society, 167, 106507. https://doi.org/10.1149/1945-7111/ab98f1

    Article  CAS  Google Scholar 

  • Elnabawy, A. O., Herron, J. A., Scaranto, J., & Mavrikakis, M. (2018). Structure sensitivity of formic acid electrooxidation on transition metal surfaces: a first-principles study. Journal of the Electrochemical Society, 165, J3109–J3121. https://doi.org/10.1149/2.0161815jes

    Article  CAS  Google Scholar 

  • Gasteiger, H. A., Kocha, S. S., Sompalli, B., & Wagner, F. T. (2005). Activity benchmarks and requirements for Pt. Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs, Appl Catal B., 56, 9–35. https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  • Gubanova, N. N., Matveev, V. A., & Shilova, O. A. (2019). Bimetallic Pt/Pd nanoparticles in sol–gel-derived silica films and xerogels. J Solgel Sci Technol., 92, 367–375. https://doi.org/10.1007/s10971-019-04971-y

    Article  CAS  Google Scholar 

  • Hoseini, S. J., Mousavi, N., Roushani, M., Mosaddeghi, L., Bahrami, M., & Rashidi, M. (2013). Thin film formation of platinum nanoparticles at oil–water interface, using organoplatinum(ii) complexes, suitable for electro-oxidation of methanol. Dalton Transactions., 42, 12364. https://doi.org/10.1039/c3dt51175h

    Article  CAS  Google Scholar 

  • Hu, Y., Xiong, T., Balogun, M.-S.J.T., Huang, Y., Adekoya, D., Zhang, S., & Tong, Y. (2020). Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni–Fe nitride nanoparticles. Materials Today Physics., 15, 100267. https://doi.org/10.1016/j.mtphys.2020.100267

    Article  Google Scholar 

  • Jacob, K. T., Raj, S., & Rannesh, L. (2007). Vegard’s law: A fundamental relation or an approximation? International Journal of Materials Research., 98, 776–779. https://doi.org/10.3139/146.101545

    Article  CAS  Google Scholar 

  • Jacob, S. J. P., Mohammed, H., Murali, K., & Kamarudeen, M. (2012). Synthesis of silver nanorods using Coscinium fenestratum extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces. B, Biointerfaces, 98, 7–11. https://doi.org/10.1016/j.colsurfb.2012.03.031

    Article  CAS  Google Scholar 

  • Jawaharraj, K., Sigdel, P., Gu, Z., Muthusamy, G., Sani, R. K., & Gadhamshetty, V. (2022). Photosynthetic microbial fuel cells for methanol treatment using graphene electrodes. Environmental Research, 215, 114045.

    Article  CAS  Google Scholar 

  • Kadja, G. T. M., Moh, M., Ilmi, N. J., Azhari, M., Khalil, A. T. N. F., Subagjo, I. G. B. N., Makertihartha, M. L., Gunawan, C. B., & Rasrendra, I. G. W. (2022). Recent advances on the nanoporous catalysts for the generation of renewable fuels. Journal of Materials Research and Technology., 17, 3277–3336. https://doi.org/10.1016/j.jmrt.2022.02.033

    Article  CAS  Google Scholar 

  • Krishnan, R. Y., Manikandan, S., Subbaiya, R., Karmegam, N., Kim, W., & Govarthanan, M. (2023). Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination–A critical review. Science of the Total Environment, 858, 159681.

    Article  CAS  Google Scholar 

  • Kumar, S., Kamboj, J., & Suman, S. S. (2011). Overview for various aspects of the health benefits of Piper longum linn fruit. Journal of Acupuncture and Meridian Studies, 4, 134–140. https://doi.org/10.1016/S2005-2901(11)60020-4

    Article  Google Scholar 

  • Lavanya, G., Anandaraj, K., Gopu, M., Selvam, K., Selvankumar, T., Govarthanan, M., & Kumar, P. (2023). Green chemistry approach for silver nanoparticles synthesis from Halimeda macroloba and their potential medical and environmental applications. Applied Nanoscience, 13(9), 5865–5875.

    Article  CAS  Google Scholar 

  • Lee, J., Tieu, P., Finzel, J., Zang, W., Yan, X., Graham, G., Pan, X., & Christopher, P. (2023). How Pt Influences H2 Reactions on High Surface-Area Pt/CeO2 Powder Catalyst Surfaces. JACS Au., 3, 2299–2313. https://doi.org/10.1021/jacsau.3c00330

    Article  CAS  Google Scholar 

  • Li, T., Tang, Z., Wang, K., Wu, W., Chen, S., & Wang, C. (2018). Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. International Journal of Hydrogen Energy, 43, 4932–4941. https://doi.org/10.1016/j.ijhydene.2018.01.107

    Article  CAS  Google Scholar 

  • Liao, W., Zhou, S., Wang, Z., Liu, F., Cao, J., & Wang, Q. (2022). Composition-controlled effects of Pb content in PtPbRu trimetallic nanoparticles on the electrocatalytic oxidation performance of methanol. Fuel, 308, 122073. https://doi.org/10.1016/j.fuel.2021.122073

    Article  CAS  Google Scholar 

  • Liao, C., Tang, Y., Liu, Y., Sun, Z., Li, W., & Ma, X. (2023). Life cycle assessment of the solid oxide fuel cell vehicles using ammonia fuel. Journal of Environmental Chemical Engineering, 11, 110872. https://doi.org/10.1016/j.jece.2023.110872

    Article  CAS  Google Scholar 

  • Lisowski, W., & Keim, E. G. (2010). Vacuum annealing phenomena in ultrathin TiDy/Pd bi-layer films evaporated on Si(100) as studied by TEM and XPS. Analytical and Bioanalytical Chemistry, 396, 2797–2804. https://doi.org/10.1007/s00216-009-3120-2

    Article  CAS  Google Scholar 

  • Liu, Z., Guo, B., Hong, L., & Lim, T. H. (2006). Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochemistry Communications, 8, 83–90. https://doi.org/10.1016/j.elecom.2005.10.019

    Article  CAS  Google Scholar 

  • Liu, X.-Y., Zhang, Y., Gong, M.-X., Tang, Y.-W., Lu, T.-H., Chen, Y., & Lee, J.-M. (2014). Facile synthesis of corallite-like Pt–Pd alloy nanostructures and their enhanced catalytic activity and stability for ethanol oxidation. J Mater Chem A Mater., 2, 13840. https://doi.org/10.1039/C4TA02522A

    Article  CAS  Google Scholar 

  • Liu, L., Lin, X.-X., Zou, S.-Y., Wang, A.-J., Chen, J.-R., & Feng, J.-J. (2016). One-pot wet-chemical synthesis of PtPd@Pt nanocrystals supported on reduced graphene oxide with highly electrocatalytic performance for ethylene glycol oxidation. Electrochimica Acta, 187, 576–583. https://doi.org/10.1016/j.electacta.2015.11.089

    Article  CAS  Google Scholar 

  • Liu, A., Yang, Y., Shi, D., Ren, X., & Ma, T. (2021). Theoretical study of the mechanism of methanol oxidation on PtNi catalyst. Inorganic Chemistry Communications, 123, 108362. https://doi.org/10.1016/j.inoche.2020.108362

    Article  CAS  Google Scholar 

  • Liu, J., Li, F., Zhong, C., & Hu, W. (2022). Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials., 15, 1554. https://doi.org/10.3390/ma15041554

    Article  CAS  Google Scholar 

  • Lu, S., Eid, K., Ge, D., Guo, J., Wang, L., Wang, H., & Gu, H. (2017). One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale, 9, 1033–1039. https://doi.org/10.1039/C6NR08895C

    Article  CAS  Google Scholar 

  • Lu, Q., Zhao, X., Luque, R., & Eid, K. (2023). Structure-activity relationship of tri-metallic Pt-based nanocatalysts for methanol oxidation reaction. Coordination Chemistry Reviews, 493, 215280. https://doi.org/10.1016/j.ccr.2023.215280

    Article  CAS  Google Scholar 

  • Maeda, K., Higashi, M., Lu, D., Abe, R., & Domen, K. (2010). Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. Journal of the American Chemical Society, 132, 5858–5868. https://doi.org/10.1021/ja1009025

    Article  CAS  Google Scholar 

  • Mahesh, N., Balakumar, S., Shyamalagowri, S., Manjunathan, J., Pavithra, M. K. S., Babu, P. S., Kamaraj, M., & Govarthanan, M. (2022). Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. Environmental Research, 213, 113723.

    Article  CAS  Google Scholar 

  • S.P.K. Malhotra, M.A. Alghuthaymi, Biomolecule-assisted biogenic synthesis of metallic nanoparticles, in: Agri-Waste and Microbes for Production of Sustainable Nanomaterials, Elsevier, 2022: pp. 139–163. https://doi.org/10.1016/B978-0-12-823575-1.00011-1.

  • Manikandan, S., Krishnan, R. Y., Vickram, S., Subbaiya, R., Kim, W., Govarthanan, M., & Karmegam, N. (2023). Emerging nanotechnology in renewable biogas production from biowastes: Impact and optimization strategies–A review. Renewable and Sustainable Energy Reviews, 181, 113345.

    Article  CAS  Google Scholar 

  • Mbokazi, S. P., Matthews, T., Chabalala, M. P., Selepe, C. T., Mugadza, K., Gwebu, S. S., Mekuto, L., & Maxakato, N. W. (2023). Recent progress on carbon-based electrocatalysts for oxygen reduction reaction: insights on the type of synthesis protocols, performances and outlook mechanisms. ChemElectroChem. https://doi.org/10.1002/celc.202300290

    Article  Google Scholar 

  • Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: A review. Energy Storage and Saving., 1, 166–216. https://doi.org/10.1016/j.enss.2022.07.002

    Article  CAS  Google Scholar 

  • Murphin Kumar, P. S., Thiripuranthagan, S., Imai, T., Kumar, G., Pugazhendhi, A., Vijayan, S. R., Esparza, R., Abe, H., & Krishnan, S. K. (2017). Pt Nanoparticles supported on mesoporous CeO2 nanostructures obtained through green approach for efficient catalytic performance toward ethanol electro-oxidation. ACS Sustainable Chemistry & Engineering, 5, 11290–11299. https://doi.org/10.1021/acssuschemeng.7b02019

    Article  CAS  Google Scholar 

  • Muthukumaran, P., Babu, P. S., Shyamalagowri, S., Aravind, J., Kamaraj, M., & Govarthanan, M. (2022). Polymeric biomolecules based nanomaterials: production strategies and pollutant mitigation as an emerging tool for environmental application. Chemosphere, 307, 136008.

    Article  CAS  Google Scholar 

  • Nasrollahzadeh, M., Sajadi, S. M., & Maham, M. (2015). Tamarix gallica leaf extract mediated novel route for green synthesis of CuO nanoparticles and their application for N-arylation of nitrogen-containing heterocycles under ligand-free conditions. RSC Advances, 5, 40628–40635. https://doi.org/10.1039/C5RA04012D

    Article  CAS  Google Scholar 

  • Noman, E. A., Al-Gheethi, A., Al-Sahari, M., Mohamed, R. M. S. R., Crane, R., Ab Aziz, N. A., & Govarthanan, M. (2022). Challenges and opportunities in the application of bioinspired engineered nanomaterials for the recovery of metal ions from mining industry wastewater. Chemosphere, 308, 136165.

    Article  CAS  Google Scholar 

  • Okamoto, H., Gojuki, T., Okano, N., Kuge, T., Morita, M., Maruyama, A., & Mukouyama, Y. (2014). Oxidation of formic acid and methanol and their potential oscillations under no or little water conditions. Electrochimica Acta, 136, 385–395. https://doi.org/10.1016/j.electacta.2014.05.135

    Article  CAS  Google Scholar 

  • Ouyang, Y., Cao, H., Wu, H., Wu, D., Wang, F., Fan, X., Yuan, W., He, M., Zhang, L. Y., & Li, C. M. (2020). Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation. Applied Catalysis, B: Environmental, 265, 118606. https://doi.org/10.1016/j.apcatb.2020.118606

    Article  CAS  Google Scholar 

  • Papadimitriou, S., Armyanov, S., Valova, E., Hubin, A., Steenhaut, O., Pavlidou, E., Kokkinidis, G., & Sotiropoulos, S. (2010). Methanol oxidation at Pt−Cu, Pt−Ni, and Pt−Co electrode coatings prepared by a galvanic replacement process. The Journal of Physical Chemistry C., 114, 5217–5223. https://doi.org/10.1021/jp911568g

    Article  CAS  Google Scholar 

  • Park, Y.-C., Peck, D.-H., Kim, S.-K., Lim, S., Jung, D.-H., Jang, J.-H., & Lee, D.-Y. (2010). Dynamic response and long-term stability of a small direct methanol fuel cell stack. Journal of Power Sources, 195, 4080–4089. https://doi.org/10.1016/j.jpowsour.2010.01.066

    Article  CAS  Google Scholar 

  • Preethi, B., Karmegam, N., Manikandan, S., Vickram, S., Subbaiya, R., Rajeshkumar, S., Gomadurai, C., & Govarthanan, M. (2024). Nanotechnology-powered innovations for agricultural and food waste valorization: A critical appraisal in the context of circular economy implementation in developing nations. Process Safety and Environmental Protection., 184, 477–491. https://doi.org/10.1016/j.psep.2024.01.100

    Article  CAS  Google Scholar 

  • Radhakrishnan, T., & Sandhyarani, N. (2019). Pt-Ag nanostructured 3D architectures: A tunable catalyst for methanol oxidation reaction. Electrochimica Acta, 298, 835–843. https://doi.org/10.1016/j.electacta.2018.12.151

    Article  CAS  Google Scholar 

  • Ramakrishna, M., Rajesh Babu, D., Gengan, R. M., Chandra, S., & Nageswara Rao, G. (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry, 6, 1–13. https://doi.org/10.1007/s40097-015-0173-y

    Article  CAS  Google Scholar 

  • Ramasubramanian, B., Rao, R. P., Chellappan, V., & Ramakrishna, S. (2022). Towards sustainable fuel cells and batteries with an AI perspective. Sustainability., 14, 16001. https://doi.org/10.3390/su142316001

    Article  CAS  Google Scholar 

  • Rigsby, M. A., Zhou, W.-P., Lewera, A., Duong, H. T., Bagus, P. S., Jaegermann, W., Hunger, R., & Wieckowski, A. (2008). Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru. The Journal of Physical Chemistry C., 112, 15595–15601. https://doi.org/10.1021/jp805374p

    Article  CAS  Google Scholar 

  • Schroeder, E. K., Dasari, P., Nadeem, M. A., Fickel, D., & Christopher, P. (2023). Controlled Pretreatment and Reconstruction of a Bimetallic Pt–Ir/Al2O3/ZSM-5 Catalyst for Increased Stability during Butane Hydrogenolysis. ACS Engineering Au. https://doi.org/10.1021/acsengineeringau.3c00012

    Article  Google Scholar 

  • Shao, M. (Ed.). (2013). Electrocatalysis in Fuel Cells. London, London: Springer. https://doi.org/10.1007/978-1-4471-4911-8

    Book  Google Scholar 

  • Sravani, B., Raghavendra, P., Chandrasekhar, Y., Reddy, Y. V. M., Sivasubramanian, R., Venkateswarlu, K., Madhavi, G., & Subramanyam Sarma, L. (2020). Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy., 45, 7680–7690. https://doi.org/10.1016/j.ijhydene.2019.02.204

    Article  CAS  Google Scholar 

  • Srivastava, R. K., Sarangi, P. K., Shadangi, K. P., Sasmal, S., Gupta, V. K., Govarthanan, M., Sahoo, U. K., & Subudhi, S. (2023). Biorefineries development from agricultural byproducts: Value addition and circular bioeconomy. Sustainable Chemistry and Pharmacy, 32, 100970.

    Article  CAS  Google Scholar 

  • Tammina, S. K., Mandal, B. K., Ranjan, S., & Dasgupta, N. (2017). Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. Journal of Photochemistry and Photobiology B: Biology, 166, 158–168. https://doi.org/10.1016/j.jphotobiol.2016.11.017

    Article  CAS  Google Scholar 

  • Tian, H., Yu, Y., Wang, Q., Li, J., Rao, P., Li, R., Du, Y., Jia, C., Luo, J., Deng, P., Shen, Y., & Tian, X. (2021). Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction. International Journal of Hydrogen Energy, 46, 31202–31215. https://doi.org/10.1016/j.ijhydene.2021.07.006

    Article  CAS  Google Scholar 

  • Venugopal, V., Balaji, D., Preeyanghaa, M., Moon, C. J., Neppolian, B., Muthusamy, G., Theerthagiri, J., Madhavan, J., & Choi, M. Y. (2023). Synergistic combination of BiFeO3 nanorods and CeVO4 nanoparticles for enhanced visible light driven photocatalytic activity. Alexandria Engineering Journal, 72, 531–543.

    Article  Google Scholar 

  • Wang, X., Chen, J., Zeng, J., Wang, Q., Li, Z., Qin, R., Wu, C., Xie, Z., & Zheng, L. (2017). The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties. Nanoscale, 9, 6643–6648. https://doi.org/10.1039/C6NR09707C

    Article  CAS  Google Scholar 

  • Yi, L., Wei, W., Zhao, C., Tian, L., Liu, J., & Wang, X. (2015). Enhanced activity of Au–Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. Journal of Power Sources, 285, 325–333. https://doi.org/10.1016/j.jpowsour.2015.03.118

    Article  CAS  Google Scholar 

  • Zhang, Z.-C., Hui, J.-F., Guo, Z.-G., Yu, Q.-Y., Xu, B., Zhang, X., Liu, Z.-C., Xu, C.-M., Gao, J.-S., & Wang, X. (2012). Solvothermal synthesis of Pt–Pd alloys with selective shapes and their enhanced electrocatalytic activities. Nanoscale, 4, 2633. https://doi.org/10.1039/c2nr12135b

    Article  CAS  Google Scholar 

  • Zhao, K., Shu, Y., Li, F., & Peng, G. (2023). Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review, Green. Energy & Environment., 8, 1043–1070. https://doi.org/10.1016/j.gee.2022.10.007

    Article  CAS  Google Scholar 

  • Zheng, J.-H., Zhang, J., Li, G., Zhang, J.-M., Zhang, B.-W., Jiang, Y.-X., & Sun, S.-G. (2022). Tuning atomic Pt site surface on PtAu alloy toward electro-oxidation of formic acid. Mater Today Energy., 27, 101028. https://doi.org/10.1016/j.mtener.2022.101028

    Article  CAS  Google Scholar 

  • Zhu, G., & Li, A. (2019). Novel button-type micro direct methanol fuel cell with graphene diffusion layer. Micromachines (basel)., 10, 658. https://doi.org/10.3390/mi10100658

    Article  Google Scholar 

  • Zhu, J., Cheng, F., Tao, Z., & Chen, J. (2008). Electrocatalytic Methanol Oxidation of Pt 0.5 Ru 0.5–x Snx /C (x=0−0.5). The Journal of Physical Chemistry C., 112, 6337–6345. https://doi.org/10.1021/jp8000543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a project for Industry-University-Research Institute platform cooperation R&D funded Korean Ministry of SMEs and Startups in 2022 (G21S331061502) and by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1F1A1067581). The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2024R436) King Saud University, Riyadh, Saudi Arabia. We are grateful for the financial support from the Ministry of Science and Technology, Taiwan, R. O. C., under contract number 109-2221-E-324-001-MY3, which has been instrumental in the successful execution of our project.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions Statement Thamaraiselvi Kanagaraj: Conceptualization, Investigation, Methodology, Writing original draft. Velu Manikandan: Methodology, Data curation, Formal analysis, Writing - review & editing. Sivarasan Ganesan: Formal analysis, Writing - review & editing. Mohammed F. Albeshr: Writing - review & editing. R. Mythili: Writing - review & editing. Kwang Soup Song: Supervision, Formal analysis, Funding acquisition, Writing - review & editing. Huang-Mu Lo: Data curation, Supervision, Funding acquisition, Writing - review & editing.

Corresponding authors

Correspondence to Kwang Soup Song or Huang-Mu Lo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraj, T., Manikandan, V., Ganesan, S. et al. Employing Piper longum extract for eco-friendly fabrication of PtPd alloy nanoclusters: advancing electrolytic performance of formic acid and methanol oxidation. Environ Geochem Health 46, 172 (2024). https://doi.org/10.1007/s10653-024-01953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01953-0

Keywords

Navigation