Skip to main content

Advertisement

Log in

Potentially toxic elements in soil–plant–water-animal continuum in a mining area from Northwestern Mexico: animal exposure pathways and health risks for children

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mining increases environmental concentrations of potentially toxic elements (PTEs) accumulating in organisms and spreading in the human food chain—their presence in milk is of great human health concern. Pathways were identified by which these elements reach raw milk from farms within a mining area in Northwestern Mexico; health risks for dairy cattle and children were also evaluated. Water from river and cattle waterers, as well as, soils showed that PTE concentrations generally below the Mexican and international limits; cattle forage concentrations were above the World Health Organization limits. Al, Mg, Mo, Ni and Zn were recorded in raw milk samples from the mining area, showing that Cd, Co, Cr, Cu, Pb and V are transferred from soil to plants but not accumulated in raw milk. Zn concentrations in raw milk exceeded the permissible limit; milk from farms without mining operations (comparison site) showed the presence of Al, Cr and Cu. In cattle tail hair, PTE did not correlate with raw milk concentrations. Metal accumulation in milk was higher through water consumption than that accumulated through forage consumption. Daily intakes (DI) of Al, Mg and Zn in cows could represent a risk for their health. The observed biotransference was higher than in other parts of Mexico, and the calculated DI and hazard quotients indicate no adverse health effects for children. However, the hazard Index values indicate that exposure to multiple PTE represents a risk for children. Management measures should be performed to control the cumulative risks to protect young children’s health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelfatah, E., Mansour, M., Ahmed, N., & El-Ganzory, H. (2019). Heavy metal residues and health risk assessment in raw milk and dairy products with a trail for removal of copper residues. Benha Veterinary Medical Journal, 36, 51–64. https://doi.org/10.21608/bvmj.2019.79648

    Article  Google Scholar 

  • Agboola, O., Babatunde, D. E., Isaac Fayomi, O. S., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A., & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. https://doi.org/10.1016/j.rineng.2020.100181

    Article  Google Scholar 

  • Aguilar-Hinojosa, Y., Meza-Figueroa, D., Villalba-Atondo, A. I., Encinas-Romero, M. A., Valenzuela-García, J. L., & Gómez-Álvarez, A. (2016). Mobility and bioavailability of metals in stream sediments impacted by mining activities: The Jaralito and the Mexicana in Sonora, Mexico. Water, Air, & Soil Pollution, 227, 1–16. https://doi.org/10.1007/s11270-016-3046-1

    Article  CAS  Google Scholar 

  • Akoto, R., & Anning, A. K. (2021). Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environmental Advances, 3, 100028. https://doi.org/10.1016/j.envadv.2020.100028

    Article  CAS  Google Scholar 

  • Al Sidawi, R., Ghambashidze, G., Urushadze, T., & Ploeger, A. (2021). Heavy metal levels in milk and cheese produced in the Kvemo Kartli region, Georgia. Foods, 10, 2234. https://doi.org/10.3390/foods10092234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archundia, D., Prado-Pano, B., González-Méndez, B., Loredo-Portales, R., & Molina-Freaner, F. (2021). Water resources affected by potentially toxic elements in an area under current and historical mining in northwestern Mexico. Environmental Monitoring and Assessment, 193, 236. https://doi.org/10.1007/s10661-021-08998-z

    Article  CAS  PubMed  Google Scholar 

  • Arif, A. M., Javed, I., Ayaz, M., Abdullah, M., Imran, M., Rashid, A., Shahbaz, M., Gondal, T. A., Qaisarani, T. B., Iqbal, Z., Salehi, B., Sharifi-Rad, J., & Martorell, M. (2020). Chemical composition, adulteration, total microbial load, and heavy metal in raw milk samples collected from dairy farms and urban areas in Lahore District, Pakistan. Journal of Food Safety, 40, e12729. https://doi.org/10.1111/jfs.12729

    Article  Google Scholar 

  • Avkopashvili, M., Avkopashvili, G., Avkopashvili, I., Asanidze, L., Matchavariani, L., Gongadze, A., & Gakhokidze, R. (2022). Mining-related metal pollution and ecological risk factors in South-Eastern Georgia. Sustainability, 14, 5621. https://doi.org/10.3390/su14095621

    Article  CAS  Google Scholar 

  • Ayar, A., Sert, D., & Akın, N. (2009). The trace metal levels in milk and dairy products consumed in middle Anatolia—Turkey. Environmental Monitoring and Assessment, 152, 1–12. https://doi.org/10.1007/s10661-008-0291-9

    Article  CAS  PubMed  Google Scholar 

  • Boudebbouz, A., Boudalia, S., Bousbia, A., Gueroui, Y., Boussadia, M. I., Chelaghmia, M. L., Zebsa, R., Affoune, A. M., & Symeon, G. K. (2022). Determination of heavy metal levels and health risk assessment of raw cow milk in Guelma Region, Algeria. Biological Trace Element Research, 201, 1704–1716. https://doi.org/10.1007/s12011-022-03308-1

    Article  CAS  PubMed  Google Scholar 

  • Bu, Q., Li, Q., Zhang, H., Cao, H., Gong, W., Zhang, X., Ling, K., & Cao, Y. (2020). Concentrations, spatial distributions, and sources of heavy metals in surface soils of the Coal Mining city Wuhai, China. Journal of Chemistry, 2020, 1–10. https://doi.org/10.1155/2020/4705954

    Article  CAS  Google Scholar 

  • Castro-González, N. P., Calderón-Sánchez, F., Pérez-Sato, M., Soní-Guillermo, E., & Reyes-Cervantes, E. (2019). Health risk due to chronic heavy metal consumption via cow’s milk produced in Puebla, Mexico, in irrigated wastewater areas. Food Additives Contaminants Part B, 12, 38–44. https://doi.org/10.1080/19393210.2018.1520742

    Article  CAS  Google Scholar 

  • Castro Gonzalez, N. P., Moreno-Rojas, R., Calderón Sánchez, F., Moreno Ortega, A., & Juarez Meneses, M. (2017). Assessment risk to children’s health due to consumption of cow’s milk in polluted areas in Puebla and Tlaxcala, Mexico. Food Additives Contaminants Part B, 10, 200–207. https://doi.org/10.1080/19393210.2017.1316320

    Article  CAS  Google Scholar 

  • Castro-González, N. P. (2017). Riesgo de contaminación de leche de vaca con metales pesados en los estados de Puebla y Tlaxcala, México. Universidad de Cordoba.

    Google Scholar 

  • Castro-González, N. P., Calderón-Sánchez, F., Castro de Jesús, J., Moreno-Rojas, R., Tamariz-Flores, J. V., Pérez-Sato, M., & Soní-Guillermo, E. (2018). Heavy metals in cow’s milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Additives Contaminants Part B, 11, 33–36. https://doi.org/10.1080/19393210.2017.1397060

    Article  CAS  Google Scholar 

  • Chandrakar, C., Kumar Jaiswal, S., Chaturvedani, A. K., Sahu, S.S., Monika, M., & Wasist, U. (2018). A review on heavy metal residues in Indian milk and their impact on human health. International Journal of Current Microbiology and Applied Sciences, 7, 1260–1268. https://doi.org/10.20546/ijcmas.2018.705.152

    Article  CAS  Google Scholar 

  • Chileshe, M. N., Syampungani, S., Festin, E. S., Tigabu, M., Daneshvar, A., & Odén, P. C. (2020). Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. Journal of Forest Research, 31, 1283–1293. https://doi.org/10.1007/s11676-019-00921-0

    Article  CAS  Google Scholar 

  • Chirinos-Peinado, D., Castro-Bedriñana, J., García-Olarte, E., Quispe-Ramos, R., & Gordillo-Espinal, S. (2021). Transfer of lead from soil to pasture grass and milk near a metallurgical complex in the Peruvian Andes. Translational Animal Science, 5, txab003. https://doi.org/10.1093/tas/txab003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CONAGUA. (2015). Actualización de la disponibilidad media anual de agua en el acuífero (2624). https://www.gob.mx/cms/uploads/attachment/file/104317/DR_2624.pdf.

  • Crowe, N. A., Neathery, M. W., Miller, W. J., Muse, L. A., Crowe, C. T., Varnadoe, J. L., & Blackmon, D. M. (1990). Influence of high dietary aluminum on performance and phosphorus bioavailability in Dairy Calves. Journal of Dairy Science, 73, 808–818. https://doi.org/10.3168/jds.S0022-0302(90)78734-6

    Article  CAS  PubMed  Google Scholar 

  • Damtew, E. T. (2020). Chemical composition and heavy metals analysis of raw cow’s milk. Journal of Environmental & Analytical, 10, 5.

    Google Scholar 

  • De la Cueva, F., Naranjo, A., Puga Torres, B. H., & Aragón, E. (2021). Presencia de metales pesados en leche cruda bovina de Machachi, Ecuador. La Granja, 33, 21–30. https://doi.org/10.17163/lgr.n33.2021.02

  • Denkhaus, E., & Salnikow, A. (2002). Nickel essentiality, toxicity and carcinogenicity. Critical Reviews in Oncology Hematology, 42, 35–36.

    Article  CAS  PubMed  Google Scholar 

  • Di Bella, C., Traina, A., Giosuè, C., Carpintieri, D., Lo Dico, G. M., Bellante, A., Del Core, M., Falco, F., Gherardi, S., Uccello, M. M., & Ferrantelli, V. (2020). Heavy metals and PAHs in meat, milk, and seafood from Augusta Area (Southern Italy): Contamination levels, dietary intake, and human exposure assessment. Frontiers in Public Health, 8, 273. https://doi.org/10.3389/fpubh.2020.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Dt, O., Aa, A., & Oe, O. (2015). Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. Journal of Environmental & Analytical Toxicology, 5, 1. https://doi.org/10.4172/2161-0525.1000334

    Article  Google Scholar 

  • Dudka, S., & Miller, W. P. (1999). Accumulation of potentially toxic elements in plants and their transfer to human food chain. Journal of Environmental Science and Health, 34, 681–708. https://doi.org/10.1080/03601239909373221

    Article  CAS  PubMed  Google Scholar 

  • EU. (2002). Heavy metals in wastes.

  • Fuentes, H. R., Alejo, E. S., Sánchez, M. R., Vidales, J. A., Askar, K. A., Turanzas, G. M., & Ortíz, R. (2005). METALES PESADOS EN LECHE CRUDA DE BOVINO 6.

  • Gómez-Álvarez, A., Valenzuela-García, J.L., Meza-Figueroa, D., de la O-Villanueva, M., Ramírez-Hernández, J., Almendariz-Tapia, J., & Pérez-Segura, E. (2011). Impact of mining activities on sediments in a semi-arid environment: San Pedro River, Sonora, Mexico. Applied Geochemistry, 26, 2101–2112. https://doi.org/10.1016/j.apgeochem.2011.07.008

  • Gomez-Alvarez, A., Yocupicio-Anaya, M. T. J., & Ortega-Romero, P. (1990). Niveles y distribucion de metales pesados en el rio Sonora y su afluente el rio Bacanuchi, Sonora, Mexico. Ecologica, 1, 10–20.

    Google Scholar 

  • Gutiérrez Núñez, N. (2023). Agricultura forrajera y geografía lechera en México. Itinerarios e imponderables de la revolución verde en el Estado de México, 1936–1970. Quinto Sol, 27. https://doi.org/10.19137/qs.v27i3.7500

  • Guzmán, H. M., Gómez-Álvarez, A., Valenzuela-García, J. L., Encinas-Romero, M. A., Villalba-Atondo, A. I., & Encinas-Soto, K. K. (2019). Assessment of the impact on sediment quality from abandoned artisanal mine runoffs in a semi-arid environment (the Sonora River basin—Northwestern Mexico). Environmental Earth Sciences, 78, 1–14. https://doi.org/10.1007/s12665-019-8131-5

    Article  CAS  Google Scholar 

  • Hashemi, M. (2018). Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicology and Environmental Safety, 154, 263–267. https://doi.org/10.1016/j.ecoenv.2018.02.058

    Article  CAS  PubMed  Google Scholar 

  • Hatar, H., Rahim, S. A., Razi, W. M., & Sahrani, F. K. (2013). Heavy metals content in acid mine drainage at abandoned and active mining area. Presented at the THE 2013 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium, Selangor, Malaysia, pp. 641–646. https://doi.org/10.1063/1.4858727

  • Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition—A review. Lipids in Health and Disease, 6, 25. https://doi.org/10.1186/1476-511X-6-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hejna, M., Gottardo, D., Baldi, A., Dell’Orto, V., Cheli, F., Zaninelli, M., & Rossi, L. (2018). Review: Nutritional ecology of heavy metals. Animal, 12, 2156–2170. https://doi.org/10.1017/S175173111700355X

    Article  CAS  PubMed  Google Scholar 

  • INEGI (Ed.). (1993). Estudio hidrológico del Estado de Sonora. INEGI, Aguascalientes, Ags.

  • International Dairy Federation. (1979). IDF Standard (1979) Metal contamination in milk and milk products. Bull. Doc. No Doe 37.

  • Johnsen, I. V., & Aaneby, J. (2019). Soil intake in ruminants grazing on heavy-metal contaminated shooting ranges. Science of the Total Environment, 687, 41–49. https://doi.org/10.1016/j.scitotenv.2019.06.086

    Article  CAS  PubMed  Google Scholar 

  • Loredo-Portales, R., Bustamante-Arce, J., González-Villa, H. N., Moreno-Rodríguez, V., Del Rio-Salas, R., Molina-Freaner, F., González-Méndez, B., & Archundia-Peralta, D. (2020). Mobility and accessibility of Zn, Pb, and As in abandoned mine tailings of northwestern Mexico. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-09051-1

    Article  PubMed  Google Scholar 

  • Luo, X., Ren, B., Hursthouse, A. S., Jiang, F., & Deng, R. (2020). Potentially toxic elements (PTEs) in crops, soil, and water near Xiangtan manganese mine, China: Potential risk to health in the foodchain. Environmental Geochemistry and Health, 42, 1965–1976. https://doi.org/10.1007/s10653-019-00454-9

    Article  CAS  PubMed  Google Scholar 

  • Luque Agraz, D., Murphy, A. D., Jones, E. C., Burquez, A., Martínez Yrizar, A., Manrique, T., Esquer, D. (2019). RÍO SONORA: El Derrame de la Mina Buenavista del Cobre-Cananea, 2014, 1st ed. Comité Interno Científico Editorial de Publicaciones del CIAD.

  • Mamtani, R., Stern, P., Dawood, I., & Cheema, S. (2011). Metals and disease: A global primary health care perspective. Journal of Toxicology, 2011, 1–11. https://doi.org/10.1155/2011/319136

    Article  CAS  Google Scholar 

  • Martens, H., & Stumpff, F. (2019). Assessment of magnesium intake according to requirement in dairy cows. Journal of Animal Physiology & Animal Nutrition, 103, 1023–1029. https://doi.org/10.1111/jpn.13106

    Article  CAS  Google Scholar 

  • Martínez Borrego, E. (2009). La lechería en el estado de méxico: Sistema productivo, cambio tecnológico y pequeños productores familiares., UNAM, Instituto de Investigaciones Sociales. ed. Ciudad Universitaria, 04510, México, D. F.

  • Meshref, A. M. S., Moselhy, W. A., & Hassan, N. Y. (2015). Aluminium content in milk and milk products and its leachability from dairy utensils. International Journal of Dairy Science, 10, 236–242. https://doi.org/10.3923/ijds.2015.236.242

    Article  CAS  Google Scholar 

  • Miclean, C., Levei, R., & Ozunu, L. (2019). Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from free-range cows. International Journal of Environmental Research and Public Health, 16, 4064. https://doi.org/10.3390/ijerph16214064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council. (1974). Nutrients and toxic substances in water for livestock and poultry. National Academy of Sciences.

    Google Scholar 

  • Nielsen, F. H. (1980). Possible future implications of nickel, arsenic, silica, vanadium and other ultra-trace elements in human nutrition. In A. R. Liss (Ed.), Clinical biochemical and nutritional aspects of trace elements (p. 397404). New York: Liss Inc.

    Google Scholar 

  • NorFor. (2022). NorFor update: Vitamins and minerals (No. https://www.norfor.info/news/norfor-update-on-vitamins-and-minerals/).

  • Noroeste. (2015). Tiran miles de litros de leche al día por derrame. Httpswwwnoroestecommxnacionaltiran-Miles--Litros--Leche-Al-Dia-Por-Derrame-HINO901134.

  • Nouri, M., & Haddioui, A. (2016). Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environmental Monitoring Assessment, 188, 6. https://doi.org/10.1007/s10661-015-5012-6

    Article  CAS  PubMed  Google Scholar 

  • NRC (Ed.). (2005). Mineral tolerance of animals (2nd rev. ed.). National Academies Press.

  • Patra, R. C., Swarup, D., Naresh, R., Kumar, P., Nandi, D., Shekhar, P., Roy, S., & Ali, S. L. (2007). Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicology and Environmental Safety, 66, 127–131. https://doi.org/10.1016/j.ecoenv.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Carrera, A., Alvarez-Gonçalvez, C. V., & Fernández-Cirelli, A. (2016). Transference factors as a tool for the estimation of arsenic milk concentration. Environmental Science and Pollution Research, 23, 16329–16335. https://doi.org/10.1007/s11356-016-6731-0

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Carrera, A., & Fernández-Cirelli, A. (2005). Arsenic concentration in water and bovine milk in Cordoba, Argentina. Preliminary results. Journal of Dairy Research, 72, 122–124. https://doi.org/10.1017/S0022029904000640

    Article  CAS  PubMed  Google Scholar 

  • Porea, T., Belmont, J., & Mahoney, D. (2000). Zinc-induced anemia and neutropenia in an adolescent. Journal of Pediatrics, 136, 688–690.

    Article  CAS  PubMed  Google Scholar 

  • Raikwar, M., Kumar, P., & Singh, M. (2008). Toxic effect of heavy metals in livestock health. Veterinary World, 1, 28. https://doi.org/10.5455/vetworld.2008.28-30

    Article  Google Scholar 

  • Rama Jyothi, N. (2021). Heavy metal sources and their effects on human health. In M. Khaled Nazal & H. Zhao (Eds.), Heavy metals—Their environmental impacts and mitigation. IntechOpen. https://doi.org/10.5772/intechopen.95370

  • Reis, L., & Oba, E. (2010). Mineral element and heavy metal poisoning in animals. Journal of Medicine and Medical Science, 1, 560–579.

    Google Scholar 

  • Rodrigues, S. M., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2012). Soil–plant–animal transfer models to improve soil protection guidelines: A case study from Portugal. Environment International, 39, 27–37. https://doi.org/10.1016/j.envint.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Roggeman, S., van den Brink, N., Van Praet, N., Blust, R., & Bervoets, L. (2013). Metal exposure and accumulation patterns in free-range cows (Bos taurus) in a contaminated natural area: Influence of spatial and social behavior. Environmental Pollution, 172, 186–199. https://doi.org/10.1016/j.envpol.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  • Roldan-Quintana, J. (1979). Geologia y yacimientos minerales del distrito minero de San Felipe, Sonora. Revista mexicana de ciencias geológicas, 3, 97–115.

    CAS  Google Scholar 

  • Sabuwa, A. M., & Nafarnda, W. D. (2020). Determination of concentration of some heavy metals in tissues of cattle slaughtered from Southern Agricultural Zone of Nasarawa State Nigeria. EAS Journal of Veterinary Medical Science, 2, 55–60. https://doi.org/10.36349/easjvms.2020.v02i05.001

  • SAGARHPA. (2019). Situación actual de la producción de leche de vaca a nivel mundial, nacional, estatal, distrital y por municipio 2019.

  • Sanliyuksel Yucel, D., Yucel, M. A., & Ileri, B. (2017). Monitoring metal pollution levels in mine wastes around a coal mine site using GIS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(W4), 335–338. https://doi.org/10.5194/isprs-annals-IV-4-W4-335-2017

    Article  Google Scholar 

  • SGM. (2022). Anuario Estadístico de la Minería Mexicana. Gob. Mex.

  • SGM. (2020). Panorama Minero del Estado de Sonora. Gob. Mex. chrome-extension. https://www.sgm.gob.mx/pdfs/SONORA.pdf.

  • SIAP. (2022). Estadística de Producción Agricola y Ganadera. http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php

  • Sobanska, S., Deneele, D., Barbillat, J., & Ledésert, B. (2016). Natural weathering of slags from primary Pb–Zn smelting as evidenced by Raman microspectroscopy. Applied Geochemistry, 64, 107–117. https://doi.org/10.1016/j.apgeochem.2015.09.011

    Article  CAS  Google Scholar 

  • Tadayon, F., Jamshidi, R., Tadayon, A., & Ostovar, R. (2013). Quantification of toxic elements in tail hair of cows as an indicator of environmental exposure in different areas from Iran. In E3S Web of Conference, Vol. 1, p. 41029. https://doi.org/10.1051/e3sconf/20130141029

  • Tchounwou, P.B., Yedjou, C. G., Patlolla, A.K., Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology, Experientia Supplementum (pp. 133–164). Springer Basel. https://doi.org/10.1007/978-3-7643-8340-4_6

  • Thorndyke, M. P., Guimaraes, O., Kistner, M. J., Wagner, J. J., & Engle, T. E. (2021). Influence of molybdenum in drinking water or feed on copper metabolism in cattle—A review. Animals, 11, 2083. https://doi.org/10.3390/ani11072083

    Article  PubMed  PubMed Central  Google Scholar 

  • UNAM. (2016). Diagnóstico ambiental en la cuenca del Río Sonora afectada por el derrame del represo “tinajas 1” de la mina Buenavista del Cobre, Cananea, Sonora.

  • US-EPA. (1991). Risk assessment guidance for superfund volume I: Human health evaluation manual supplemental guidance. USEPA, Washington, DC, USA 28.

  • WHO. (1996). WHO permissible limits for heavy metals in plant and soil.

  • Wilkinson, J. M., Hill, J., & Phillips, C. J. C. (2003). The accumulation of potentially-toxic metals by grazing ruminants. The Proceedings of the Nutrition Society, 62, 267–277. https://doi.org/10.1079/PNS2003209

    Article  CAS  PubMed  Google Scholar 

  • Wrzecińska, M., Kowalczyk, A., Cwynar, P., & Czerniawska-Piątkowska, E. (2021). Disorders of the reproductive health of cattle as a response to exposure to toxic metals. Biology, 10, 882. https://doi.org/10.3390/biology10090882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, A., Lo, K., Zheng, T., Yang, J., Bai, Y., Feng, Y., Cheng, N., & Liu, S. (2020). Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Diseases and Translational Medicine, 6, 251–259. https://doi.org/10.1016/j.cdtm.2020.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, X. (2019). Heavy metals in Chinese raw cow milk: Spatial distribution and relationships with silage and environmental factors 125.

Download references

Acknowledgements

This research was supported by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT)—Universidad Nacional Autónoma de México (UNAM) “PAPIIT IN214422” and the National Council of Humanities, Science, and Technology (CONAHCYT, Mexico) “CONAHCYT CF2023-I1846”. The authors thank: Javier Tadeo Leon and Lucy Natividad Mora Palomino, Academic technicians from the Department of Environmental and Soil Sciences at UNAM Geology Institute for their technical assistance, and Ofelia Morton Bermea researcher at the Geophysics Institute at UNAM for the ICP-MS analyses. All authors also thank José Ricardo Ávila Loyola for professional practices and Diana Fischer for English edition.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text and reviewed the manuscript. D.A. prepared figures and tables.

Corresponding author

Correspondence to Denisse Archundia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 29 kb)

Supplementary file2 (DOCX 90 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archundia, D., Prado-Pano, B. & Molina-Freaner, F. Potentially toxic elements in soil–plant–water-animal continuum in a mining area from Northwestern Mexico: animal exposure pathways and health risks for children. Environ Geochem Health 46, 99 (2024). https://doi.org/10.1007/s10653-024-01902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01902-x

Keywords

Navigation